import numpy as np def deg2rad(deg): return deg*np.pi/180 def inv_RT(RT): # RT_h = np.concatenate([RT, np.array([[0,0,0,1]])], axis=0) RT_inv = np.linalg.inv(RT) return RT_inv[:3, :] def camNormal2worldNormal(rot_c2w, camNormal): H,W,_ = camNormal.shape normal_img = np.matmul(rot_c2w[None, :, :], camNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3]) return normal_img def worldNormal2camNormal(rot_w2c, normal_map_world): H,W,_ = normal_map_world.shape # normal_img = np.matmul(rot_w2c[None, :, :], worldNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3]) # faster version # Reshape the normal map into a 2D array where each row represents a normal vector normal_map_flat = normal_map_world.reshape(-1, 3) # Transform the normal vectors using the transformation matrix normal_map_camera_flat = np.dot(normal_map_flat, rot_w2c.T) # Reshape the transformed normal map back to its original shape normal_map_camera = normal_map_camera_flat.reshape(normal_map_world.shape) return normal_map_camera def trans_normal(normal, RT_w2c, RT_w2c_target): # normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal) # normal_target_cam = worldNormal2camNormal(RT_w2c_target[:3,:3], normal_world) relative_RT = np.matmul(RT_w2c_target[:3,:3], np.linalg.inv(RT_w2c[:3,:3])) return worldNormal2camNormal(relative_RT[:3,:3], normal) def trans_normal_complex(normal, RT_w2c, RT_w2c_rela_to_cond): # camview -> world -> condview normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal) # debug_normal_world = normal2img(normal_world) # relative_RT = np.matmul(RT_w2c_rela_to_cond[:3,:3], np.linalg.inv(RT_w2c[:3,:3])) normal_target_cam = worldNormal2camNormal(RT_w2c_rela_to_cond[:3,:3], normal_world) # normal_condview = normal2img(normal_target_cam) return normal_target_cam def img2normal(img): return (img/255.)*2-1 def normal2img(normal): return np.uint8((normal*0.5+0.5)*255) def norm_normalize(normal, dim=-1): normal = normal/(np.linalg.norm(normal, axis=dim, keepdims=True)+1e-6) return normal def plot_grid_images(images, row, col, path=None): import cv2 """ Args: images: np.array [B, H, W, 3] row: col: save_path: Returns: """ images = images.detach().cpu().numpy() assert row * col == images.shape[0] images = np.vstack([np.hstack(images[r * col:(r + 1) * col]) for r in range(row)]) if path: cv2.imwrite(path, images[:,:,::-1] * 255) return images