import os import torch import fire import gradio as gr from PIL import Image from functools import partial +import spaces import cv2 import time import numpy as np from rembg import remove from segment_anything import sam_model_registry, SamPredictor import os import torch from PIL import Image from typing import Dict, Optional, List from dataclasses import dataclass from mvdiffusion.data.single_image_dataset import SingleImageDataset from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline from einops import rearrange import numpy as np import subprocess from datetime import datetime def save_image(tensor): ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() # pdb.set_trace() im = Image.fromarray(ndarr) return ndarr def save_image_to_disk(tensor, fp): ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() # pdb.set_trace() im = Image.fromarray(ndarr) im.save(fp) return ndarr def save_image_numpy(ndarr, fp): im = Image.fromarray(ndarr) im.save(fp) weight_dtype = torch.float16 _TITLE = '''Era3D: High-Resolution Multiview Diffusion using Efficient Row-wise Attention''' _DESCRIPTION = '''
Generate consistent high-resolution multi-view normals maps and color images.
The demo does not include the mesh reconstruction part, please visit our github repo to get a textured mesh.
''' _GPU_ID = 0 if not hasattr(Image, 'Resampling'): Image.Resampling = Image +@spaces.GPU def sam_init(): sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_pt", "sam_vit_h_4b8939.pth") model_type = "vit_h" sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device="cuda") predictor = SamPredictor(sam) return predictor +@spaces.GPU def sam_segment(predictor, input_image, *bbox_coords): bbox = np.array(bbox_coords) image = np.asarray(input_image) start_time = time.time() predictor.set_image(image) masks_bbox, scores_bbox, logits_bbox = predictor.predict(box=bbox, multimask_output=True) print(f"SAM Time: {time.time() - start_time:.3f}s") out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8) out_image[:, :, :3] = image out_image_bbox = out_image.copy() out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255 torch.cuda.empty_cache() return Image.fromarray(out_image_bbox, mode='RGBA') def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result def preprocess(predictor, input_image, chk_group=None, segment=True, rescale=False): RES = 1024 input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS) if chk_group is not None: segment = "Background Removal" in chk_group rescale = "Rescale" in chk_group if segment: image_rem = input_image.convert('RGBA') image_nobg = remove(image_rem, alpha_matting=True) arr = np.asarray(image_nobg)[:, :, -1] x_nonzero = np.nonzero(arr.sum(axis=0)) y_nonzero = np.nonzero(arr.sum(axis=1)) x_min = int(x_nonzero[0].min()) y_min = int(y_nonzero[0].min()) x_max = int(x_nonzero[0].max()) y_max = int(y_nonzero[0].max()) input_image = sam_segment(predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max) # Rescale and recenter if rescale: image_arr = np.array(input_image) in_w, in_h = image_arr.shape[:2] out_res = min(RES, max(in_w, in_h)) ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY) x, y, w, h = cv2.boundingRect(mask) max_size = max(w, h) ratio = 0.75 side_len = int(max_size / ratio) padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8) center = side_len // 2 padded_image[center - h // 2 : center - h // 2 + h, center - w // 2 : center - w // 2 + w] = image_arr[y : y + h, x : x + w] rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS) rgba_arr = np.array(rgba) / 255.0 rgb = rgba_arr[..., :3] * rgba_arr[..., -1:] + (1 - rgba_arr[..., -1:]) input_image = Image.fromarray((rgb * 255).astype(np.uint8)) else: input_image = expand2square(input_image, (127, 127, 127, 0)) return input_image, input_image.resize((320, 320), Image.Resampling.LANCZOS) +@spaces.GPU def load_era3d_pipeline(cfg): # Load scheduler, tokenizer and models. pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained( cfg.pretrained_model_name_or_path, torch_dtype=weight_dtype ) if torch.cuda.is_available(): pipeline.to('cuda') pipeline.unet.enable_xformers_memory_efficient_attention() # sys.main_lock = threading.Lock() return pipeline from mvdiffusion.data.single_image_dataset import SingleImageDataset def prepare_data(single_image, crop_size, cfg): dataset = SingleImageDataset(root_dir='', num_views=6, img_wh=[512, 512], bg_color='white', crop_size=crop_size, single_image=single_image, prompt_embeds_path=cfg.validation_dataset.prompt_embeds_path) return dataset[0] scene = 'scene' +@spaces.GPU def run_pipeline(pipeline, cfg, single_image, guidance_scale, steps, seed, crop_size, chk_group=None): import pdb global scene # pdb.set_trace() if chk_group is not None: write_image = "Write Results" in chk_group batch = prepare_data(single_image, crop_size, cfg) pipeline.set_progress_bar_config(disable=True) seed = int(seed) generator = torch.Generator(device=pipeline.unet.device).manual_seed(seed) imgs_in = torch.cat([batch['imgs_in']]*2, dim=0) num_views = imgs_in.shape[1] imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W")# (B*Nv, 3, H, W) normal_prompt_embeddings, clr_prompt_embeddings = batch['normal_prompt_embeddings'], batch['color_prompt_embeddings'] prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0) prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C") out = pipeline( imgs_in, None, prompt_embeds=prompt_embeddings, generator=generator, guidance_scale=guidance_scale, output_type='pt', num_images_per_prompt=1, # return_elevation_focal=cfg.log_elevation_focal_length, **cfg.pipe_validation_kwargs ).images bsz = out.shape[0] // 2 normals_pred = out[:bsz] images_pred = out[bsz:] num_views = 6 if write_image: VIEWS = ['front', 'front_right', 'right', 'back', 'left', 'front_left'] cur_dir = os.path.join(cfg.save_dir, f"cropsize-{int(crop_size)}-cfg{guidance_scale:.1f}") scene = 'scene'+datetime.now().strftime('@%Y%m%d-%H%M%S') scene_dir = os.path.join(cur_dir, scene) os.makedirs(scene_dir, exist_ok=True) for j in range(num_views): view = VIEWS[j] normal = normals_pred[j] color = images_pred[j] normal_filename = f"normals_{view}_masked.png" color_filename = f"color_{view}_masked.png" normal = save_image_to_disk(normal, os.path.join(scene_dir, normal_filename)) color = save_image_to_disk(color, os.path.join(scene_dir, color_filename)) normals_pred = [save_image(normals_pred[i]) for i in range(bsz)] images_pred = [save_image(images_pred[i]) for i in range(bsz)] out = images_pred + normals_pred return out def process_3d(mode, data_dir, guidance_scale, crop_size): dir = None global scene cur_dir = os.path.dirname(os.path.abspath(__file__)) subprocess.run( f'cd instant-nsr-pl && bash run.sh 0 {scene} exp_demo && cd ..', shell=True, ) import glob obj_files = glob.glob(f'{cur_dir}/instant-nsr-pl/exp_demo/{scene}/*/save/*.obj', recursive=True) print(obj_files) if obj_files: dir = obj_files[0] return dir @dataclass class TestConfig: pretrained_model_name_or_path: str pretrained_unet_path:Optional[str] revision: Optional[str] validation_dataset: Dict save_dir: str seed: Optional[int] validation_batch_size: int dataloader_num_workers: int # save_single_views: bool save_mode: str local_rank: int pipe_kwargs: Dict pipe_validation_kwargs: Dict unet_from_pretrained_kwargs: Dict validation_guidance_scales: List[float] validation_grid_nrow: int camera_embedding_lr_mult: float num_views: int camera_embedding_type: str pred_type: str # joint, or ablation regress_elevation: bool enable_xformers_memory_efficient_attention: bool cond_on_normals: bool cond_on_colors: bool regress_elevation: bool regress_focal_length: bool def run_demo(): from utils.misc import load_config from omegaconf import OmegaConf # parse YAML config to OmegaConf cfg = load_config("./configs/test_unclip-512-6view.yaml") # print(cfg) schema = OmegaConf.structured(TestConfig) cfg = OmegaConf.merge(schema, cfg) pipeline = load_era3d_pipeline(cfg) torch.set_grad_enabled(False) pipeline.to('cuda') predictor = sam_init() custom_theme = gr.themes.Soft(primary_hue="blue").set( button_secondary_background_fill="*neutral_100", button_secondary_background_fill_hover="*neutral_200" ) custom_css = '''#disp_image { text-align: center; /* Horizontally center the content */ }''' with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo: with gr.Row(): with gr.Column(scale=1): gr.Markdown('# ' + _TITLE) gr.Markdown(_DESCRIPTION) with gr.Row(variant='panel'): with gr.Column(scale=1): input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image') with gr.Column(scale=1): processed_image_highres = gr.Image(type='pil', image_mode='RGBA', visible=False) processed_image = gr.Image( type='pil', label="Processed Image", interactive=False, # height=320, image_mode='RGBA', elem_id="disp_image", visible=True, ) # with gr.Column(scale=1): # ## add 3D Model # obj_3d = gr.Model3D( # # clear_color=[0.0, 0.0, 0.0, 0.0], # label="3D Model", height=320, # # camera_position=[0,0,2.0] # ) with gr.Row(variant='panel'): with gr.Column(scale=1): example_folder = os.path.join(os.path.dirname(__file__), "./examples") example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)] gr.Examples( examples=example_fns, inputs=[input_image], outputs=[input_image], cache_examples=False, label='Examples (click one of the images below to start)', examples_per_page=30, ) with gr.Column(scale=1): with gr.Accordion('Advanced options', open=True): with gr.Row(): with gr.Column(): input_processing = gr.CheckboxGroup( ['Background Removal'], label='Input Image Preprocessing', value=['Background Removal'], info='untick this, if masked image with alpha channel', ) with gr.Column(): output_processing = gr.CheckboxGroup( ['Write Results'], label='write the results in ./outputs folder', value=['Write Results'] ) with gr.Row(): with gr.Column(): scale_slider = gr.Slider(1, 5, value=3, step=1, label='Classifier Free Guidance Scale') with gr.Column(): steps_slider = gr.Slider(15, 100, value=40, step=1, label='Number of Diffusion Inference Steps') with gr.Row(): with gr.Column(): seed = gr.Number(600, label='Seed') with gr.Column(): crop_size = gr.Number(420, label='Crop size') mode = gr.Textbox('train', visible=False) data_dir = gr.Textbox('outputs', visible=False) # with gr.Row(): # method = gr.Radio(choices=['instant-nsr-pl', 'NeuS'], label='Method (Default: instant-nsr-pl)', value='instant-nsr-pl') run_btn = gr.Button('Generate Normals and Colors', variant='primary', interactive=True) # recon_btn = gr.Button('Reconstruct 3D model', variant='primary', interactive=True) # gr.Markdown("First click Generate button, then click Reconstruct button. Reconstruction may cost several minutes.") with gr.Row(): view_1 = gr.Image(interactive=False, height=512, show_label=False) view_2 = gr.Image(interactive=False, height=512, show_label=False) view_3 = gr.Image(interactive=False, height=512, show_label=False) with gr.Row(): view_4 = gr.Image(interactive=False, height=512, show_label=False) view_5 = gr.Image(interactive=False, height=512, show_label=False) view_6 = gr.Image(interactive=False, height=512, show_label=False) with gr.Row(): normal_1 = gr.Image(interactive=False, height=512, show_label=False) normal_2 = gr.Image(interactive=False, height=512, show_label=False) normal_3 = gr.Image(interactive=False, height=512, show_label=False) with gr.Row(): normal_4 = gr.Image(interactive=False, height=512, show_label=False) normal_5 = gr.Image(interactive=False, height=512, show_label=False) normal_6 = gr.Image(interactive=False, height=512, show_label=False) print('Launching...') run_btn.click( fn=partial(preprocess, predictor), inputs=[input_image, input_processing], outputs=[processed_image_highres, processed_image], queue=True ).success( fn=partial(run_pipeline, pipeline, cfg), inputs=[processed_image_highres, scale_slider, steps_slider, seed, crop_size, output_processing], outputs=[view_1, view_2, view_3, view_4, view_5, view_6, normal_1, normal_2, normal_3, normal_4, normal_5, normal_6], ) # recon_btn.click( # process_3d, inputs=[mode, data_dir, scale_slider, crop_size], outputs=[obj_3d] # ) demo.queue().launch(share=True, max_threads=80) if __name__ == '__main__': fire.Fire(run_demo)