import gradio as gr from transformers import pipeline import pandas as pd import numpy as np import os model_checkpoint = "penpen/novel-zh-en" translator = pipeline("translation", model=model_checkpoint, max_time=7) default_dict = pd.read_csv("example_dictionary.csv", names=["Chinese", "English"]) examples = pd.read_csv("examples.csv", header = None) def predict(text, df): translation = "" terms_dict = {chinese: english for chinese, english in zip(df["Chinese"].tolist(), df["English"].tolist())} for key in terms_dict: if key in text: masking = "MASK"*len(key) text = text.replace(key, "" + masking+ "" + terms_dict[key] + "") split_text = text.splitlines() for text in split_text: text = text.strip() if text: if len(text) < 512: sentence = translator(text)[0]["translation_text"] + '\n\n' translation+=sentence print(split_text) else: for i in range(0,len(text),512): if i+512>len(text): sentence = translator(text[i:])[0]["translation_text"] else: sentence = translator(text[i:i+512])[0]["translation_text"] translation+=sentence return translation def load_dict(file): df = pd.read_csv(file.name, names=["Chinese", "English"]) return df, df def search_dict(query, df): if not query: return df mask = np.column_stack([df[col].str.contains(query, na=False) for col in df]) return df.loc[mask.any(axis=1)] with gr.Blocks() as project: dict_hidden = gr.State(default_dict) gr.Markdown("

Chinese Webnovel Translator

A translator that is fine-tuned on Chinese Webnovels
") with gr.Tab("Translator"): with gr.Row(): with gr.Column(scale=1, min_width=600): translate_input = gr.Textbox(label="Chinese", lines=7, max_lines = 100, placeholder="Chinese...") translate_button = gr.Button("Translate") translate_hidden = gr.State("") translate_output = gr.Textbox(label="English", lines=7, max_lines = 100, placeholder="English...") example = gr.Examples(inputs = translate_input, examples=examples[0].tolist()) with gr.Tab("Proper Noun Dictionary"): with gr.Row(): with gr.Column(scale=1, min_width=600): dict_example_file = gr.File(label="Example Dictionary", value = "example_dictionary.csv") dict_file = gr.File(interactive = True, label="Upload a custom dictionary (CSV File)") dict_upload_button = gr.Button("Upload") dict_search = gr.Textbox(label="Search Dictionary") dict_search_button = gr.Button("Search") dict_display = gr.Dataframe(value = default_dict, max_rows = 5, col_count=(2, "fixed")) translate_button.click(predict, inputs=[translate_input, dict_hidden], outputs=translate_output) dict_upload_button.click(load_dict, inputs=dict_file, outputs = [dict_hidden, dict_display]) dict_search_button.click(search_dict, inputs=[dict_search, dict_hidden], outputs = dict_display) project.launch(debug=True)