penscola commited on
Commit
8529e9a
·
verified ·
1 Parent(s): 77fe98c

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -0
app.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import streamlit.components.v1 as com
3
+ #import libraries
4
+ from transformers import AutoModelForSequenceClassification,AutoTokenizer, AutoConfig
5
+ import numpy as np
6
+ #convert logits to probabilities
7
+ from scipy.special import softmax
8
+
9
+
10
+ #import the model
11
+ tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased')
12
+
13
+ model_path = f"penscola/news-d-bert"
14
+ config = AutoConfig.from_pretrained(model_path)
15
+ model = AutoModelForSequenceClassification.from_pretrained(model_path)
16
+ #Set the page configs
17
+ st.set_page_config(page_title='Fake News Detection',page_icon='😎',layout='wide')
18
+
19
+ #welcome Animation
20
+ st.markdown('<h1> Fake News Detection </h1>',unsafe_allow_html=True)
21
+
22
+ #Create a form to take user inputs
23
+ with st.form(key='tweet',clear_on_submit=True):
24
+ text=st.text_area('Copy and paste the news or type one')
25
+ submit=st.form_submit_button('submit')
26
+
27
+ #create columns to show outputs
28
+ col2,col3=st.columns(2)
29
+ col2.title('Fake or Legit')
30
+ col3.title('Confidence of this prediction')
31
+
32
+ if submit:
33
+ print('submitted')
34
+ #pass text to preprocessor
35
+ def preprocess(text):
36
+ #initiate an empty list
37
+ new_text = []
38
+ #split text by space
39
+ for t in text.split(" "):
40
+ #set username to @user
41
+ t = '@user' if t.startswith('@') and len(t) > 1 else t
42
+ #set tweet source to http
43
+ t = 'http' if t.startswith('http') else t
44
+ #store text in the list
45
+ new_text.append(t)
46
+ #change text from list back to string
47
+ return " ".join(new_text)
48
+
49
+
50
+ #pass text to model
51
+
52
+ #change label id
53
+ config.id2label = {0: 'Fake', 1: 'Legit'}
54
+
55
+ text = preprocess(text)
56
+
57
+ # PyTorch-based models
58
+ encoded_input = tokenizer(text, return_tensors='pt')
59
+ output = model(**encoded_input)
60
+ scores = output[0][0].detach().numpy()
61
+ scores = softmax(scores)
62
+
63
+ #Process scores
64
+ ranking = np.argsort(scores)
65
+ ranking = ranking[::-1]
66
+ l = config.id2label[ranking[0]]
67
+ s = scores[ranking[0]]
68
+
69
+ #output
70
+ if l==1:
71
+ col2.write('Legit')
72
+ col3.write(f'{s}%')
73
+ else:
74
+ col2.write('Fake')
75
+ col3.write(f'{s}%')