File size: 3,567 Bytes
19dbe8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import gradio as gr
import tensorflow as tf
import cv2
import matplotlib.pyplot as plt
import numpy as np

# Load the model
model = tf.keras.models.load_model('plant_model_v5-beta.h5')

# Define the class names
class_names = {
    0: 'Apple___Apple_scab',
    1: 'Apple___Black_rot',
    2: 'Apple___Cedar_apple_rust',
    3: 'Apple___healthy',
    4: 'Not a plant',
    5: 'Blueberry___healthy',
    6: 'Cherry___Powdery_mildew',
    7: 'Cherry___healthy',
    8: 'Corn___Cercospora_leaf_spot Gray_leaf_spot',
    9: 'Corn___Common_rust',
    10: 'Corn___Northern_Leaf_Blight',
    11: 'Corn___healthy',
    12: 'Grape___Black_rot',
    13: 'Grape___Esca_(Black_Measles)',
    14: 'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)',
    15: 'Grape___healthy',
    16: 'Orange___Haunglongbing_(Citrus_greening)',
    17: 'Peach___Bacterial_spot',
    18: 'Peach___healthy',
    19: 'Pepper,_bell___Bacterial_spot',
    20: 'Pepper,_bell___healthy',
    21: 'Potato___Early_blight',
    22: 'Potato___Late_blight',
    23: 'Potato___healthy',
    24: 'Raspberry___healthy',
    25: 'Soybean___healthy',
    26: 'Squash___Powdery_mildew',
    27: 'Strawberry___Leaf_scorch',
    28: 'Strawberry___healthy',
    29: 'Tomato___Bacterial_spot',
    30: 'Tomato___Early_blight',
    31: 'Tomato___Late_blight',
    32: 'Tomato___Leaf_Mold',
    33: 'Tomato___Septoria_leaf_spot',
    34: 'Tomato___Spider_mites Two-spotted_spider_mite',
    35: 'Tomato___Target_Spot',
    36: 'Tomato___Tomato_Yellow_Leaf_Curl_Virus',
    37: 'Tomato___Tomato_mosaic_virus',
    38: 'Tomato___healthy'
}

def edge_and_cut(img, threshold1, threshold2):
    emb_img = img.copy()
    edges = cv2.Canny(img, threshold1, threshold2)
    edge_coors = []
    for i in range(edges.shape[0]):
        for j in range(edges.shape[1]):
            if edges[i][j] != 0:
                edge_coors.append((i, j))

    if len(edge_coors) == 0:
        return emb_img

    row_min = edge_coors[np.argsort([coor[0] for coor in edge_coors])[0]][0]
    row_max = edge_coors[np.argsort([coor[0] for coor in edge_coors])[-1]][0]
    col_min = edge_coors[np.argsort([coor[1] for coor in edge_coors])[0]][1]
    col_max = edge_coors[np.argsort([coor[1] for coor in edge_coors])[-1]][1]
    new_img = img[row_min:row_max, col_min:col_max]

    emb_color = np.array([255], dtype=np.uint8)  # Grayscale version of [255, 0, 0]
    emb_img[row_min-10:row_min+10, col_min:col_max] = emb_color
    emb_img[row_max-10:row_max+10, col_min:col_max] = emb_color
    emb_img[row_min:row_max, col_min-10:col_min+10] = emb_color
    emb_img[row_min:row_max, col_max-10:col_max+10] = emb_color

    return emb_img



def classify_and_visualize(image):
    # Preprocess the image
    img_array = tf.image.resize(image, [256, 256])
    img_array = tf.expand_dims(img_array, 0) / 255.0

    # Make a prediction
    prediction = model.predict(img_array)
    predicted_class = tf.argmax(prediction[0], axis=-1)
    confidence = np.max(prediction[0])

    if confidence < 0.60:
        class_name = "The image you uploaded might not be in the dataset. Try making your leaf background white."
        bounded_image = image
    else:
        class_name = class_names[predicted_class.numpy()]
        bounded_image = edge_and_cut(image, 200, 400)

    return class_name, confidence, bounded_image


iface = gr.Interface(
    fn=classify_and_visualize,
    inputs="image",
    outputs=["text", "number", "image"],
    interpretation="default",
    examples=[
        ['examples/grot.jpg'],
        ['examples/corn.jpg'],
    ])
iface.launch()