File size: 4,692 Bytes
388fd98
 
6fd2099
388fd98
 
 
0f76588
 
 
727692a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import pandas as pd
import numpy as np
import streamlit as st
import os
import time
import pickle
import seaborn as sns
import matplotlib.pyplot as plt
import pip


try:
    #insert headers
    st.header(" Welcome to Sales Prediction Using Prophet ")
    st.subheader("To help you know your future sales📈...")
    st.image("future.png", width=500, caption="Sales Prediction")

    Disp_results = pd.DataFrame()  # Initialize for download

    # Take input
    with st.form("This form", clear_on_submit=True):
        st.subheader("Enter the number of day(s)/Week(s) you want to predict, And the frequency as D for Daily or W for weekly ")

        frequency = str(st.text_input("Frequency 'D' for Daily 'W' for weekly ")).upper()  # convert to string and change to upper

        Number_of_days = int(st.number_input("Number of day(s)/Week(s)"))  # convert to int

        submit = st.form_submit_button("Predict your sales")

        # process the input
        if submit:
            # check if we have the right data type
            if frequency == "D" or frequency == 'W':
                st.success("Inputs received successfully ✅")

                # import model
                with open('prophet_model.pkl', 'rb') as f:
                    model = pickle.load(f)

                # pass inputs to the model(To make predictions, prophet requires number of days and frequency)
                future = model.make_future_dataframe(periods=Number_of_days, freq=str(frequency), include_history=False)

                # Make prediction
                forecast = model.predict(future)

                # show results
                print(f'[INFO]: The whole results {forecast}')

                # pick the relevant columns from the forecast
                sales_forecast = forecast[['ds', 'yhat_lower', 'yhat_upper', 'yhat']]

                # rename the columns
                Disp_results = sales_forecast.rename(columns={'ds': 'Date', 'yhat_lower': 'lowest Expected sales', 'yhat_upper': 'Highest Expected Sales', 'yhat': 'Expected Sales'})

                # print result dataframe to terminal
                print(f'[INFO]: results dataframe {Disp_results}')

                # show progress
                with st.spinner("Prediction in progress..."):
                    time.sleep(2)
                    st.balloons()
                    st.success("Great✅")

                # Display results
                if frequency == "W":
                    output_frequency = 'Week(s)'
                else:
                    output_frequency = 'Day(s)'

                # Check frequency
                st.write(f"These are your predicted sales in the next {Number_of_days} {output_frequency}")
                st.dataframe(Disp_results)

                # Display the graph of sales
                st.title(f"Line Graph Of Predicted Sales Over {Number_of_days} {output_frequency} ")
                # Line Graph
                st.line_chart(data=Disp_results, x='Date', y='Expected Sales')
                print('[INFO]: Line Chart displayed')

            else:
                st.error("Input the right frequency or Days ⚠")

        # Print input to the terminal
        print(f'[INFO]: These are the inputs to the model {Number_of_days},{frequency}')
        print(f"[INFO]: Inputs received")


    # Create a function to convert df to csv
    def convert_to_csv(df):
        return df.to_csv()


    # Create an expander
    expand = st.expander('Download Results as CSV')
    with expand:
        st.download_button(
            'Download results',
            convert_to_csv(Disp_results),
            'prediction_results.csv',
            'text/csv',
            'download'
        )


    # Create Sidebar for Description
    sidebar = st.sidebar.title('Sales Prediction')

    # first option
    option1 = st.sidebar.button('About', key="About")

    # second option
    option2 = st.sidebar.button('About the sales prediction', key="sales prediction")

    # Display text for a selected option
    if option1:
        st.sidebar.write('This is a Sales prediction app Using Prophet(Developed by meta), this project was done under the Azubi Africa Data Analysis Training program ')

    elif option2:
        st.sidebar.write('This is a time series analysis & forecasting problem. In this project, we shalll predict store sales on data from Corporation Favorita, a large Ecuadorian-based grocery retailer. Specifically, this app predicts the sales for up to  weeks in advance for Corporation Favorita ')

except:
    st.error('''something went wrong: Make sure you entered the correct number of days
    otherwise contact admin!
    '''
             )