from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from speechbrain.pretrained import GraphemeToPhoneme import datasets import os import torchaudio from MispronounciationDetector import MispronounciationDetector # Load sample data audio_path, transcript_path = os.path.join(os.getcwd(), "data", "arctic_a0003.wav"), os.path.join(os.getcwd(), "data", "arctic_a0003.txt") audio, org_sr = torchaudio.load(audio_path) audio = torchaudio.functional.resample(audio, orig_freq=org_sr, new_freq=16000) audio = audio.view(audio.shape[1]) with open(transcript_path) as f: text = f.read() f.close() print("Done loading sample data") # Load processors and models device = "cpu" path = os.path.join(os.getcwd(), "model", "checkpoint-1200") model = Wav2Vec2ForCTC.from_pretrained(path).to(device) processor = Wav2Vec2Processor.from_pretrained(path) g2p = GraphemeToPhoneme.from_hparams("speechbrain/soundchoice-g2p") mispronounciation_detector = MispronounciationDetector(model, processor, g2p, "cpu") print("Done loading models and processors") # Predict raw_info = mispronounciation_detector.detect(audio, text) aligned_phoneme_output_delimited_by_words = " ".join(raw_info['ref']) + "\n" + " ".join(raw_info['hyp']) + "\n" +\ " ".join(raw_info['phoneme_errors']) print(f"PER: {raw_info['per']}\n") print(f"Phoneme level errors:\n{raw_info['phoneme_output']}\n")