Spaces:
Sleeping
Sleeping
Yotam-Perlitz
commited on
Commit
β’
40b9d90
1
Parent(s):
298500e
revising app
Browse filesSigned-off-by: Yotam-Perlitz <[email protected]>
app.py
CHANGED
@@ -6,59 +6,226 @@ import plotly.express as px
|
|
6 |
import streamlit as st
|
7 |
from bat import Benchmark, Config, Reporter, Tester
|
8 |
|
9 |
-
holistic_scenarios = [
|
10 |
-
"arena_hard",
|
11 |
-
"mixeval",
|
12 |
-
"agieval",
|
13 |
-
"arc_c",
|
14 |
-
"alpacav1",
|
15 |
-
"alpacav2",
|
16 |
-
"alpacaeval2_lc",
|
17 |
-
"arena_elo",
|
18 |
-
"bbh",
|
19 |
-
"eq_benchv2",
|
20 |
-
"gpt4all",
|
21 |
-
"hugging_6",
|
22 |
-
"llmonitor",
|
23 |
-
"magi",
|
24 |
-
"mmlu",
|
25 |
-
"mt_bench",
|
26 |
-
"biggen_mwr",
|
27 |
-
"olmes_average",
|
28 |
-
"mmlu_pro",
|
29 |
-
]
|
30 |
-
|
31 |
|
32 |
def get_nice_benchmark_name(bench_name):
|
33 |
-
|
34 |
-
"
|
35 |
-
"
|
36 |
-
"
|
37 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
"arena_hard": "Arena Hard",
|
39 |
-
"
|
40 |
-
"
|
41 |
-
"
|
42 |
-
"
|
43 |
-
"
|
44 |
-
"mmlu": "MMLU",
|
45 |
-
"alpacav1": "AlpacaEval V1",
|
46 |
-
"magi": "MAGI",
|
47 |
-
"alpacaeval2_lc": "AlpacaEval V2 Length Adjusted",
|
48 |
-
"gpt4all": "GPT-4-All",
|
49 |
-
"humaneval": "HumanEval",
|
50 |
-
"mbpp": "MBPP",
|
51 |
-
"hellaswag": "HellaSwag",
|
52 |
-
"hugging_6": "HF OpenLLM V1",
|
53 |
-
"winogrande": "Winogrande",
|
54 |
}
|
55 |
|
56 |
-
if bench_name in
|
57 |
-
return
|
58 |
else:
|
59 |
return bench_name
|
60 |
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
st.markdown(
|
63 |
"""<h1 style='text-align: center; color: black;'>ποΈββοΈ BenchBench Leaderboard ποΈββοΈ</h1>""",
|
64 |
unsafe_allow_html=True,
|
@@ -70,7 +237,11 @@ st.markdown(
|
|
70 |
)
|
71 |
|
72 |
|
73 |
-
all_scenarios_for_aggragate =
|
|
|
|
|
|
|
|
|
74 |
|
75 |
st.subheader("The Leaderboard", divider=True)
|
76 |
# st.subheader("ποΈββοΈ BenchBench Leaderboard π", divider=True)
|
@@ -79,29 +250,26 @@ leftcol, rightcol = st.columns([2, 1])
|
|
79 |
|
80 |
with st.expander("Leaderboard configurations (defaults are great BTW)", icon="βοΈ"):
|
81 |
with st.form("my_form"):
|
82 |
-
all_scenarios_for_aggragate_with_all =
|
83 |
-
|
|
|
|
|
84 |
|
85 |
aggragate_scenarios = st.multiselect(
|
86 |
-
"Scenarios in Aggregate",
|
87 |
-
|
88 |
-
|
89 |
-
# all_scenarios_for_aggragate,
|
90 |
)
|
91 |
|
92 |
corr_type = st.selectbox(
|
93 |
label="Select Correlation type", options=["kendall", "pearson"], index=0
|
94 |
)
|
95 |
|
96 |
-
aggragate_scenario_blacklist =
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
]
|
102 |
-
if "All Holistic" not in aggragate_scenarios
|
103 |
-
else []
|
104 |
-
)
|
105 |
|
106 |
model_select_strategy = st.selectbox(
|
107 |
label="Select strategy",
|
@@ -109,7 +277,15 @@ with st.expander("Leaderboard configurations (defaults are great BTW)", icon="
|
|
109 |
index=0,
|
110 |
)
|
111 |
|
112 |
-
n_models_taken_list =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
n_exps = 10
|
114 |
|
115 |
submitted = st.form_submit_button(label="Run BAT")
|
@@ -197,27 +373,18 @@ def run_load(
|
|
197 |
# allbench.df = allbench.df[~allbench.df["source"].str.contains("livebench")]
|
198 |
|
199 |
allbench.extend(my_benchmark)
|
200 |
-
allbench.df = allbench.df.drop(columns=["tag"])
|
201 |
allbench.clear_repeated_scenarios()
|
202 |
-
allbench.df = allbench.df.query("scenario not in @holistic_scenarios")
|
203 |
-
|
204 |
-
# allbench.df = allbench.df[~allbench.df["scenario"].str.contains("_mixed")]
|
205 |
-
# allbench.df = allbench.df[~allbench.df["scenario"].str.contains("agentbench")]
|
206 |
-
|
207 |
-
# st.dataframe(holistic.df.query('scenario=="aggregate"'))
|
208 |
|
|
|
|
|
209 |
allbench = allbench.extend(holistic)
|
210 |
|
211 |
tester = Tester(cfg=cfg)
|
212 |
|
213 |
-
# len(allbench.get_scenario_appearences_count().keys())
|
214 |
-
|
215 |
-
allbench.df.query('source=="BlueBench"').model.unique()
|
216 |
-
|
217 |
-
allbench.df.query('scenario=="aggregate"').model.unique()
|
218 |
-
|
219 |
agreements = tester.all_vs_all_agreement_testing(
|
220 |
-
allbench,
|
|
|
221 |
)
|
222 |
|
223 |
agreements.to_csv(cache_path, index=False)
|
@@ -236,12 +403,20 @@ agreements = run_load(
|
|
236 |
|
237 |
reporter = Reporter()
|
238 |
z_scores = reporter.get_all_z_scores(agreements=agreements, aggragate_name="aggregate")
|
|
|
239 |
|
240 |
corr_name = f"{'Kendall Tau' if corr_type=='kendall' else 'Per.'} Corr."
|
241 |
|
242 |
z_scores["z_score"] = z_scores["z_score"].round(2)
|
243 |
z_scores["corr_with_agg"] = z_scores["corr_with_agg"].round(2)
|
244 |
z_scores["p_value_of_corr_with_agg"] = z_scores["p_value_of_corr_with_agg"].round(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
data = (
|
247 |
z_scores.rename(
|
@@ -249,7 +424,8 @@ data = (
|
|
249 |
"scenario": "Benchmark",
|
250 |
"z_score": "Z Score",
|
251 |
"corr_with_agg": corr_name,
|
252 |
-
"p_value_of_corr_with_agg": "p
|
|
|
253 |
"source": "Source",
|
254 |
}
|
255 |
)
|
@@ -258,12 +434,6 @@ data = (
|
|
258 |
)
|
259 |
|
260 |
|
261 |
-
data = data[~data["Source"].str.contains("livebench")]
|
262 |
-
data = data[~data["Source"].str.contains("biggen")]
|
263 |
-
# data.drop(columns=["Source"], inplace=True)
|
264 |
-
data["Benchmark"] = data["Benchmark"].apply(lambda x: get_nice_benchmark_name(x))
|
265 |
-
|
266 |
-
|
267 |
# Apply coloring based on 'Z' valuesz
|
268 |
def highlight_uploaded_benchmark(row):
|
269 |
if row["Source"] == "Uploaded Benchmark":
|
@@ -279,16 +449,23 @@ styled_data = (
|
|
279 |
vmin=-data["Z Score"].abs().max(),
|
280 |
vmax=data["Z Score"].abs().max(),
|
281 |
)
|
282 |
-
.format(subset=["Z Score", corr_name, "p value of Corr."], formatter="{:.2}")
|
283 |
.apply(highlight_uploaded_benchmark, axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
)
|
285 |
|
|
|
286 |
|
287 |
st.dataframe(
|
288 |
data=styled_data,
|
289 |
hide_index=True,
|
290 |
use_container_width=True,
|
291 |
-
height=
|
292 |
)
|
293 |
|
294 |
st.markdown(
|
@@ -309,7 +486,9 @@ st.write(r"""
|
|
309 |
|
310 |
benchmarks = data["Benchmark"].unique().tolist()
|
311 |
plotted_scenario = st.selectbox(
|
312 |
-
"Choose Benchmark to plot",
|
|
|
|
|
313 |
)
|
314 |
|
315 |
|
|
|
6 |
import streamlit as st
|
7 |
from bat import Benchmark, Config, Reporter, Tester
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def get_nice_benchmark_name(bench_name):
|
11 |
+
prettified_names = {
|
12 |
+
"holmes": "Holmes",
|
13 |
+
"helm_lite_narrativeqa": "Helm Lite NarrativeQA",
|
14 |
+
"helm_lite_naturalquestionsopen": "Helm Lite NaturalQuestionsOpen",
|
15 |
+
"helm_lite_naturalquestionsclosed": "Helm Lite NaturalQuestionsClosed",
|
16 |
+
"helm_lite_openbookqa": "Helm Lite OpenBookQA",
|
17 |
+
"helm_lite_mmlu": "Helm Lite MMLU",
|
18 |
+
"helm_lite_math_equivalentcot": "Helm Lite MathEquivalentCOT",
|
19 |
+
"helm_lite_gsm8k": "Helm Lite GSM8K",
|
20 |
+
"helm_lite_legalbench": "Helm Lite LegalBench",
|
21 |
+
"helm_lite_medqa": "Helm Lite MedQA",
|
22 |
+
"helm_lite_wmt2014": "Helm Lite WMT2014",
|
23 |
+
"hfv2_bbh": "HFv2 BBH",
|
24 |
+
"hfv2_bbh_raw": "HFv2 BBH Raw",
|
25 |
+
"hfv2_gpqa": "HFv2 GPQA",
|
26 |
+
"hfv2_ifeval": "HFv2 IFEval",
|
27 |
+
"hfv2_math_lvl_5": "HFv2 Math Level 5",
|
28 |
+
"hfv2_mmlu_pro": "HFv2 MMLU Pro",
|
29 |
+
"hfv2_musr": "HFv2 MuSR",
|
30 |
+
"oc_mmlu": "OpenCompass MMLU",
|
31 |
+
"oc_mmlu_pro": "OpenCompass MMLU Pro",
|
32 |
+
"oc_cmmlu": "OpenCompass CMMLU",
|
33 |
+
"oc_bbh": "OpenCompass BBH",
|
34 |
+
"oc_gqpa_dimand": "OpenCompass GQPA-Dimand",
|
35 |
+
"oc_humaneval": "OpenCompass HumanEval",
|
36 |
+
"oc_ifeval": "OpenCompass IFEval",
|
37 |
+
"helm_mmlu": "Helm MMLU",
|
38 |
+
"helm_boolq": "Helm BoolQ",
|
39 |
+
"helm_narrativeqa": "Helm NarrativeQA",
|
40 |
+
"helm_naturalquestionsclosed": "Helm NaturalQuestionsClosed",
|
41 |
+
"helm_naturalquestionsopen": "Helm NaturalQuestionsOpen",
|
42 |
+
"helm_quac": "Helm QuAC",
|
43 |
+
"helm_openbookqa": "Helm OpenBookQA",
|
44 |
+
"helm_imdb": "Helm IMDB",
|
45 |
+
"helm_civilcomments": "Helm CivilComments",
|
46 |
+
"helm_raft": "Helm RAFT",
|
47 |
+
"mmlu_pro": "MMLU Pro",
|
48 |
+
"mixeval_triviaqa": "MixEval TriviaQA",
|
49 |
+
"mixeval_mmlu": "MixEval MMLU",
|
50 |
+
"mixeval_drop": "MixEval DROP",
|
51 |
+
"mixeval_hellaswag": "MixEval HellaSwag",
|
52 |
+
"mixeval_commonsenseqa": "MixEval CommonsenseQA",
|
53 |
+
"mixeval_triviaqa_hard": "MixEval TriviaQA Hard",
|
54 |
+
"mixeval_mmlu_hard": "MixEval MMLU Hard",
|
55 |
+
"mixeval_drop_hard": "MixEval DROP Hard",
|
56 |
+
"oc_language": "OpenCompass Language",
|
57 |
+
"oc_knowledge": "OpenCompass Knowledge",
|
58 |
+
"oc_reasoning": "OpenCompass Reasoning",
|
59 |
+
"oc_math": "OpenCompass Math",
|
60 |
+
"oc_code": "OpenCompass Code",
|
61 |
+
"oc_instruct": "OpenCompass Instruction",
|
62 |
+
"oc_agent": "OpenCompass Agent",
|
63 |
+
"oc_arena": "OpenCompass Arena",
|
64 |
+
"lb_reasoning": "LiveBench Reasoning",
|
65 |
+
"lb_coding": "LiveBench Coding",
|
66 |
+
"lb_mathematics": "LiveBench Mathematics",
|
67 |
+
"lb_data_analysis": "LiveBench Data Analysis",
|
68 |
+
"lb_language": "LiveBench Language",
|
69 |
+
"lb_if": "LiveBench Instruction Following",
|
70 |
+
"wb_info_seek": "WildBench Information Seeking",
|
71 |
+
"wb_creative": "WildBench Creative",
|
72 |
+
"wb_code_debug": "WildBench Code Debugging",
|
73 |
+
"wb_math_data": "WildBench Math & Data",
|
74 |
+
"wb_reason_plan": "WildBench Reasoning & Planning",
|
75 |
+
"wb_score": "WildBench Score",
|
76 |
+
"hfv1_arc": "HFv1 ARC",
|
77 |
+
"hfv1_gsm8k": "HFv1 GSM8K",
|
78 |
+
"hfv1_hellaswag": "HFv1 HellaSwag",
|
79 |
+
"hfv1_mmlu": "HFv1 MMLU",
|
80 |
+
"hfv1_truthfulqa": "HFv1 TruthfulQA",
|
81 |
+
"hfv1_winogrande": "HFv1 Winogrande",
|
82 |
+
"biggen_grounding": "BigBench Grounding",
|
83 |
+
"biggen_instruction_following": "BigBench Instruction Following",
|
84 |
+
"biggen_planning": "BigBench Planning",
|
85 |
+
"biggen_reasoning": "BigBench Reasoning",
|
86 |
+
"biggen_refinement": "BigBench Refinement",
|
87 |
+
"biggen_safety": "BigBench Safety",
|
88 |
+
"biggen_theory_of_mind": "BigBench Theory of Mind",
|
89 |
+
"biggen_tool_usage": "BigBench Tool Usage",
|
90 |
+
"biggen_multilingual": "BigBench Multilingual",
|
91 |
+
"lb_reasoning_average": "LiveBench Reasoning Average",
|
92 |
+
"lb_coding_average": "LiveBench Coding Average",
|
93 |
+
"lb_mathematics_average": "LiveBench Mathematics Average",
|
94 |
+
"lb_data_analysis_average": "LiveBench Data Analysis Average",
|
95 |
+
"lb_language_average": "LiveBench Language Average",
|
96 |
+
"lb_if_average": "LiveBench Instruction Following Average",
|
97 |
+
"helm_lite": "Helm Lite",
|
98 |
+
"hf_open_llm_v2": "HF OpenLLM v2",
|
99 |
+
"opencompass_academic": "OpenCompass Academic",
|
100 |
+
"arena_elo": "Arena Elo",
|
101 |
+
"helm_classic": "Helm Classic",
|
102 |
+
"mixeval": "MixEval",
|
103 |
+
"mixeval_hard": "MixEval Hard",
|
104 |
+
"opencompass": "OpenCompass",
|
105 |
+
"alphacaeval_v2lc": "AlphacaEval v2lc",
|
106 |
+
"livebench_240725": "LiveBench 240725",
|
107 |
+
"wb_elo_lc": "WildBench Elo LC",
|
108 |
"arena_hard": "Arena Hard",
|
109 |
+
"agentbench": "AgentBench",
|
110 |
+
"hf_open_llm_v1": "HF OpenLLM v1",
|
111 |
+
"biggen": "BigBench",
|
112 |
+
"livebench_240624": "LiveBench 240624",
|
113 |
+
"mt_bench": "MT-Bench",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
}
|
115 |
|
116 |
+
if bench_name in prettified_names:
|
117 |
+
return prettified_names[bench_name]
|
118 |
else:
|
119 |
return bench_name
|
120 |
|
121 |
|
122 |
+
holistic_scenarios = [
|
123 |
+
get_nice_benchmark_name(scen)
|
124 |
+
for scen in [
|
125 |
+
# "holmes",
|
126 |
+
"helm_lite",
|
127 |
+
# "narrativeqa",
|
128 |
+
# "naturalquestionsopen",
|
129 |
+
# "naturalquestionsclosed",
|
130 |
+
# "openbookqa",
|
131 |
+
# "mmlu",
|
132 |
+
# "math_equivalentcot",
|
133 |
+
# "gsm8k",
|
134 |
+
# "legalbench",
|
135 |
+
# "medqa",
|
136 |
+
# "wmt2014",
|
137 |
+
# "arc_c",
|
138 |
+
# "arc_e",
|
139 |
+
# "boolq",
|
140 |
+
# "csqa",
|
141 |
+
# "hellaswag",
|
142 |
+
# "piqa",
|
143 |
+
# "siqa",
|
144 |
+
# "winogrande",
|
145 |
+
# "olmes_average",
|
146 |
+
# "bbh",
|
147 |
+
# "bbh_raw",
|
148 |
+
# "gpqa",
|
149 |
+
"hf_open_llm_v2",
|
150 |
+
# "ifeval",
|
151 |
+
# "math_lvl_5",
|
152 |
+
# "mmlu_pro",
|
153 |
+
# "musr",
|
154 |
+
"opencompass_academic",
|
155 |
+
# "oc_mmlu",
|
156 |
+
# "oc_mmlu_pro",
|
157 |
+
# "oc_cmmlu",
|
158 |
+
# "oc_bbh",
|
159 |
+
# "oc_gqpa_dimand",
|
160 |
+
# "oc_math",
|
161 |
+
# "oc_humaneval",
|
162 |
+
# "oc_ifeval",
|
163 |
+
# "helm_mmlu",
|
164 |
+
"arena_elo",
|
165 |
+
"helm_classic",
|
166 |
+
# "quac",
|
167 |
+
# "truthfulqa",
|
168 |
+
# "ms_marcoregular",
|
169 |
+
# "ms_marcotrec",
|
170 |
+
# "cnn/dailymail",
|
171 |
+
# "xsum",
|
172 |
+
# "imdb",
|
173 |
+
# "civilcomments",
|
174 |
+
# "raft",
|
175 |
+
"mixeval_hard",
|
176 |
+
"mixeval",
|
177 |
+
# "arena_elo0527",
|
178 |
+
"opencompass",
|
179 |
+
# "oc_language",
|
180 |
+
# "oc_knowledge",
|
181 |
+
# "oc_reasoning",
|
182 |
+
# "oc_code",
|
183 |
+
# "oc_instruct",
|
184 |
+
# "oc_agent",
|
185 |
+
# "oc_arena",
|
186 |
+
"alphacaeval_v2lc",
|
187 |
+
"livebench_240725",
|
188 |
+
"livebench_240624",
|
189 |
+
# "lb_reasoning",
|
190 |
+
# "lb_coding",
|
191 |
+
# "lb_mathematics",
|
192 |
+
# "lb_data_analysis",
|
193 |
+
# "lb_language",
|
194 |
+
# "lb_if",
|
195 |
+
"wb_elo_lc",
|
196 |
+
# "wb_info_seek",
|
197 |
+
# "wb_creative",
|
198 |
+
# "wb_code_debug",
|
199 |
+
# "wb_math_data",
|
200 |
+
# "wb_reason_plan",
|
201 |
+
# "wb_score",
|
202 |
+
# "boolqmixed",
|
203 |
+
"arena_hard",
|
204 |
+
"agentbench",
|
205 |
+
# "arc",
|
206 |
+
"hf_open_llm_v1",
|
207 |
+
"biggen",
|
208 |
+
# "biggen_grounding",
|
209 |
+
# "biggen_instruction_following",
|
210 |
+
# "biggen_planning",
|
211 |
+
# "biggen_reasoning",
|
212 |
+
# "biggen_refinement",
|
213 |
+
# "biggen_safety",
|
214 |
+
# "biggen_theory_of_mind",
|
215 |
+
# "biggen_tool_usage",
|
216 |
+
# "biggen_multilingual",
|
217 |
+
# "lb_global_average",
|
218 |
+
# "lb_reasoning_average",
|
219 |
+
# "lb_coding_average",
|
220 |
+
# "lb_mathematics_average",
|
221 |
+
# "lb_data_analysis_average",
|
222 |
+
# "lb_language_average",
|
223 |
+
# "lb_if_average",
|
224 |
+
# "mt_bench",
|
225 |
+
]
|
226 |
+
]
|
227 |
+
|
228 |
+
|
229 |
st.markdown(
|
230 |
"""<h1 style='text-align: center; color: black;'>ποΈββοΈ BenchBench Leaderboard ποΈββοΈ</h1>""",
|
231 |
unsafe_allow_html=True,
|
|
|
237 |
)
|
238 |
|
239 |
|
240 |
+
all_scenarios_for_aggragate = Benchmark()
|
241 |
+
all_scenarios_for_aggragate.load_local_catalog()
|
242 |
+
all_scenarios_for_aggragate = (
|
243 |
+
all_scenarios_for_aggragate.df["scenario"].unique().tolist()
|
244 |
+
)
|
245 |
|
246 |
st.subheader("The Leaderboard", divider=True)
|
247 |
# st.subheader("ποΈββοΈ BenchBench Leaderboard π", divider=True)
|
|
|
250 |
|
251 |
with st.expander("Leaderboard configurations (defaults are great BTW)", icon="βοΈ"):
|
252 |
with st.form("my_form"):
|
253 |
+
all_scenarios_for_aggragate_with_all = [
|
254 |
+
get_nice_benchmark_name(scenario)
|
255 |
+
for scenario in all_scenarios_for_aggragate
|
256 |
+
]
|
257 |
|
258 |
aggragate_scenarios = st.multiselect(
|
259 |
+
"Scenarios in Aggregate (defualts are the 'Holistic' benchmarks)",
|
260 |
+
all_scenarios_for_aggragate,
|
261 |
+
holistic_scenarios,
|
|
|
262 |
)
|
263 |
|
264 |
corr_type = st.selectbox(
|
265 |
label="Select Correlation type", options=["kendall", "pearson"], index=0
|
266 |
)
|
267 |
|
268 |
+
aggragate_scenario_blacklist = [
|
269 |
+
scen
|
270 |
+
for scen in all_scenarios_for_aggragate
|
271 |
+
if scen not in aggragate_scenarios
|
272 |
+
]
|
|
|
|
|
|
|
|
|
273 |
|
274 |
model_select_strategy = st.selectbox(
|
275 |
label="Select strategy",
|
|
|
277 |
index=0,
|
278 |
)
|
279 |
|
280 |
+
n_models_taken_list = st.slider(
|
281 |
+
label="Select number of models to use",
|
282 |
+
min_value=3,
|
283 |
+
max_value=20,
|
284 |
+
value=10,
|
285 |
+
)
|
286 |
+
|
287 |
+
n_models_taken_list = [n_models_taken_list]
|
288 |
+
|
289 |
n_exps = 10
|
290 |
|
291 |
submitted = st.form_submit_button(label="Run BAT")
|
|
|
373 |
# allbench.df = allbench.df[~allbench.df["source"].str.contains("livebench")]
|
374 |
|
375 |
allbench.extend(my_benchmark)
|
376 |
+
# allbench.df = allbench.df.drop(columns=["tag"])
|
377 |
allbench.clear_repeated_scenarios()
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
|
379 |
+
# removing and adding the holistic scenarios
|
380 |
+
allbench.df = allbench.df.query("scenario not in @holistic_scenarios")
|
381 |
allbench = allbench.extend(holistic)
|
382 |
|
383 |
tester = Tester(cfg=cfg)
|
384 |
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
agreements = tester.all_vs_all_agreement_testing(
|
386 |
+
allbench,
|
387 |
+
single_source_scenario="aggregate", # olny measuring all with the aggragate
|
388 |
)
|
389 |
|
390 |
agreements.to_csv(cache_path, index=False)
|
|
|
403 |
|
404 |
reporter = Reporter()
|
405 |
z_scores = reporter.get_all_z_scores(agreements=agreements, aggragate_name="aggregate")
|
406 |
+
z_scores.drop(columns=["n_models_of_corr_with_agg"], inplace=True)
|
407 |
|
408 |
corr_name = f"{'Kendall Tau' if corr_type=='kendall' else 'Per.'} Corr."
|
409 |
|
410 |
z_scores["z_score"] = z_scores["z_score"].round(2)
|
411 |
z_scores["corr_with_agg"] = z_scores["corr_with_agg"].round(2)
|
412 |
z_scores["p_value_of_corr_with_agg"] = z_scores["p_value_of_corr_with_agg"].round(2)
|
413 |
+
# z_scores["n_models_of_corr_with_agg"] = z_scores["n_models_of_corr_with_agg"].round(1)
|
414 |
+
|
415 |
+
z_scores["source"] = z_scores["source"].apply(lambda x: x.split(".csv")[0])
|
416 |
+
|
417 |
+
# print(z_scores["scenario"].unique().tolist())
|
418 |
+
|
419 |
+
z_scores["scenario"] = z_scores["scenario"].apply(lambda x: get_nice_benchmark_name(x))
|
420 |
|
421 |
data = (
|
422 |
z_scores.rename(
|
|
|
424 |
"scenario": "Benchmark",
|
425 |
"z_score": "Z Score",
|
426 |
"corr_with_agg": corr_name,
|
427 |
+
"p_value_of_corr_with_agg": "p-value of Corr.",
|
428 |
+
# "n_models_of_corr_with_agg": "# Models Used",
|
429 |
"source": "Source",
|
430 |
}
|
431 |
)
|
|
|
434 |
)
|
435 |
|
436 |
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
# Apply coloring based on 'Z' valuesz
|
438 |
def highlight_uploaded_benchmark(row):
|
439 |
if row["Source"] == "Uploaded Benchmark":
|
|
|
449 |
vmin=-data["Z Score"].abs().max(),
|
450 |
vmax=data["Z Score"].abs().max(),
|
451 |
)
|
|
|
452 |
.apply(highlight_uploaded_benchmark, axis=1)
|
453 |
+
.background_gradient(
|
454 |
+
subset=["p-value of Corr."],
|
455 |
+
cmap="Reds",
|
456 |
+
vmin=0.1,
|
457 |
+
vmax=1,
|
458 |
+
)
|
459 |
+
.format(subset=["Z Score", corr_name, "p-value of Corr."], formatter="{:.2}")
|
460 |
)
|
461 |
|
462 |
+
print(data["Benchmark"].unique().tolist())
|
463 |
|
464 |
st.dataframe(
|
465 |
data=styled_data,
|
466 |
hide_index=True,
|
467 |
use_container_width=True,
|
468 |
+
height=500,
|
469 |
)
|
470 |
|
471 |
st.markdown(
|
|
|
486 |
|
487 |
benchmarks = data["Benchmark"].unique().tolist()
|
488 |
plotted_scenario = st.selectbox(
|
489 |
+
"Choose Benchmark to plot",
|
490 |
+
benchmarks,
|
491 |
+
index=benchmarks.index("Arena Elo"),
|
492 |
)
|
493 |
|
494 |
|