#!/usr/bin/env python from __future__ import annotations import sys import os import datetime import gradio as gr import spaces @spaces.GPU(duration=60 * 3) def run_on_gpu(input_point_cloud: gr.utils.NamedString, gen_resolution_global: int, padding_factor: float, gen_subsample_manifold_iter: int, gen_refine_iter: int) -> str: print('Started inference at {}'.format(datetime.datetime.now())) print('Inputs:', input_point_cloud, gen_resolution_global, padding_factor, gen_subsample_manifold_iter, gen_refine_iter) print('Types:', type(input_point_cloud), type(gen_resolution_global), type(padding_factor), type(gen_subsample_manifold_iter), type(gen_refine_iter)) sys.path.append(os.path.abspath('ppsurf')) import subprocess import uuid in_file = '{}'.format(input_point_cloud.name) rand_hash = uuid.uuid4().hex out_dir = '/tmp/outputs/{}'.format(rand_hash) out_file_basename = os.path.basename(in_file) + '.ply' out_file = os.path.join(out_dir, os.path.basename(in_file), out_file_basename) out_file_gradio = os.path.splitext(in_file)[0] + '_ppsurf.ply' print('in_file:', in_file) print('out_dir:', out_dir) print('out_file:', out_file) print('out_file_gradio:', out_file_gradio) os.makedirs(out_dir, exist_ok=True) model_path = 'models/ppsurf_50nn/version_0/checkpoints/last.ckpt' args = [ 'pps.py', 'predict', '-c', 'ppsurf/configs/poco.yaml', '-c', 'ppsurf/configs/ppsurf.yaml', '-c', 'ppsurf/configs/ppsurf_50nn.yaml', '--ckpt_path', model_path, '--data.init_args.in_file', in_file, '--model.init_args.results_dir', out_dir, '--trainer.logger', 'False', '--trainer.devices', '1', '--model.init_args.gen_resolution_global', str(gen_resolution_global), '--data.init_args.padding_factor', str(padding_factor), '--model.init_args.gen_subsample_manifold_iter', str(gen_subsample_manifold_iter), '--model.init_args.gen_refine_iter', str(gen_refine_iter), ] sys.argv = args try: subprocess.run(['python', 'ppsurf/pps.py'] + args[1:]) # need subprocess to spawn workers except Exception as e: gr.Warning("Reconstruction failed:\n{}".format(e)) print('Finished inference at {}'.format(datetime.datetime.now())) import shutil shutil.copyfile(src=out_file, dst=out_file_gradio) return out_file_gradio def main(): description_header = '# PPSurf: Combining Patches and Point Convolutions for Detailed Surface Reconstruction' description_col0 = '''## [Github](https://github.com/cg-tuwien/ppsurf) Supported input file formats: - PLY, STL, OBJ and other mesh files, - XYZ as whitespace-separated text file, - NPY and NPZ (key='arr_0'), - LAS and LAZ (version 1.0-1.4), COPC and CRS. Best results for 50k-250k points. ''' description_col1 = '''## [Project Info](https://www.cg.tuwien.ac.at/research/publications/2024/erler_2024_ppsurf/) This method is meant for scans of single and few objects. Quality for scenes and landscapes will be lower. Reconstructions with default settings will be done in about 30 seconds. Inference will be terminated after 180 seconds. ''' # can't render many input types directly in Gradio Model3D # so we need to convert to supported format # Gradio can't draw point clouds anyway (2024-03-04), so we skip this for now # def convert_to_ply(input_point_cloud_upload: gr.utils.NamedString): # # # add absolute path to import dirs # import sys # import os # sys.path.append(os.path.abspath('ppsurf')) # # # import os # # os.chdir('ppsurf') # # print('Inputs:', input_point_cloud_upload, type(input_point_cloud_upload)) # input_shape: str = input_point_cloud_upload.name # if not input_shape.endswith('.ply'): # # load file # from ppsurf.source.occupancy_data_module import OccupancyDataModule # pts_np = OccupancyDataModule.load_pts(input_shape) # # # convert to ply # import trimesh # mesh = trimesh.Trimesh(vertices=pts_np[:, :3]) # input_shape = input_shape + '.ply' # mesh.export(input_shape) # # print('ls:\n', subprocess.run(['ls', os.path.dirname(input_shape)])) # # # show in viewer # print(type(input_tabs)) # # print(type(input_point_cloud_viewer)) # # input_tabs.selected = 'pc_viewer' # # input_point_cloud_viewer.value = input_shape with gr.Blocks(css='style.css') as demo: # descriptions gr.Markdown(description_header) with gr.Row(): with gr.Column(): gr.Markdown(description_col0) with gr.Column(): gr.Markdown(description_col1) # inputs and outputs with gr.Row(): with gr.Column(): input_point_cloud_upload = gr.File(show_label=False, file_count='single') # with gr.Tabs() as input_tabs: # re-enable when Gradio supports point clouds # with gr.TabItem(label='Input Point Cloud Upload', id='pc_upload'): # input_point_cloud_upload.upload( # fn=convert_to_ply, # inputs=[ # input_point_cloud_upload, # ], # outputs=[ # # input_point_cloud_viewer, # not available here # ]) # with gr.TabItem(label='Input Point Cloud Viewer', id='pc_viewer'): # input_point_cloud_viewer = gr.Model3D(show_label=False) gen_resolution_global = gr.Slider( label='Grid Resolution (larger for more details)', minimum=17, maximum=513, value=129, step=2) padding_factor = gr.Slider( label='Padding Factor (larger if object is cut off at boundaries)', minimum=0, maximum=1.0, value=0.05, step=0.05) gen_subsample_manifold_iter = gr.Slider( label='Subsample Manifold Iterations (larger for larger point clouds)', minimum=3, maximum=30, value=10, step=1) gen_refine_iter = gr.Slider( label='Edge Refinement Iterations (larger for more details)', minimum=3, maximum=30, value=10, step=1) with gr.Column(): result_3d_model = gr.Model3D(label='Reconstructed 3D model') # progress_text = gr.Text(label='Progress') # with gr.Tabs(): # with gr.TabItem(label='Reconstructed 3D model'): # result_3d_model = gr.Model3D(show_label=False) # with gr.TabItem(label='Output mesh file'): # output_file = gr.File(show_label=False) with gr.Row(): run_button = gr.Button('Reconstruct with PPSurf') run_button.click(fn=run_on_gpu, inputs=[ input_point_cloud_upload, gen_resolution_global, padding_factor, gen_subsample_manifold_iter, gen_refine_iter, ], outputs=[ result_3d_model, # output_file, # progress_text, ]) demo.queue(max_size=5) demo.launch(debug=True) if __name__ == '__main__': print(os.environ) main()