Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Load the model
|
6 |
+
model = load_model(r"C:\Users\uSeR\Documents\ai-tutor-ruangguru\project\waste_classifier_model.keras")
|
7 |
+
|
8 |
+
# Prediction function
|
9 |
+
def classify_image(image):
|
10 |
+
# Ensure the image is in the expected format
|
11 |
+
if image is None:
|
12 |
+
return "No image provided."
|
13 |
+
|
14 |
+
# Convert the image to a numpy array
|
15 |
+
image = np.array(image)
|
16 |
+
|
17 |
+
# Check if the image has the expected shape and resize if necessary
|
18 |
+
if image.shape != (128, 128, 3):
|
19 |
+
image = np.resize(image, (128, 128, 3)) # Resize the image to (128, 128, 3)
|
20 |
+
|
21 |
+
# Normalize the image
|
22 |
+
image = image / 255.0
|
23 |
+
|
24 |
+
# Add batch dimension
|
25 |
+
image = np.expand_dims(image, axis=0)
|
26 |
+
|
27 |
+
# Make prediction
|
28 |
+
prediction = model.predict(image)
|
29 |
+
|
30 |
+
# Interpret the prediction
|
31 |
+
class_label = 'Organic' if prediction[0][0] > 0.5 else 'Recycleable' # Adjust labels based on your model's output
|
32 |
+
return class_label
|
33 |
+
|
34 |
+
# Create Gradio interface
|
35 |
+
interface = gr.Interface(fn=classify_image, inputs=gr.Image(type="numpy"), outputs="text")
|
36 |
+
interface.launch(share=True)
|