import gradio as gr from tensorflow.keras.models import load_model import numpy as np import os # Load the model (ensure it's in the same directory as app.py) model_path = os.path.join(os.path.dirname(__file__), 'waste_classifier_mobilenetv2.h5') model = load_model(model_path) # Prediction function def classify_image(image): if image is None: return "No image provided." image = np.array(image) if image.shape != (224, 224, 3): image = np.resize(image, (224, 224, 3)) image = image / 255.0 image = np.expand_dims(image, axis=0) prediction = model.predict(image) class_label = 'Reyclabble' if prediction[0][0] > 0.5 else 'Organic' return class_label # Create Gradio interface interface = gr.Interface(fn=classify_image, inputs=gr.Image(type="numpy"), outputs="text") interface.launch(share=True)