Spaces:
Runtime error
Runtime error
# set path | |
import glob, os, sys; sys.path.append('../scripts') | |
#import helper | |
import scripts.process as pre | |
import scripts.clean as clean | |
#import needed libraries | |
import seaborn as sns | |
from pandas import DataFrame | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import streamlit as st | |
import pandas as pd | |
from sklearn.feature_extraction import _stop_words | |
import string | |
from tqdm.autonotebook import tqdm | |
import numpy as np | |
#Haystack Components | |
def start_haystack(documents_processed): | |
document_store = InMemoryDocumentStore() | |
document_store.write_documents(documents_processed) | |
retriever = TfidfRetriever(document_store=document_store) | |
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2-distilled", use_gpu=True) | |
pipeline = ExtractiveQAPipeline(reader, retriever) | |
return pipeline | |
def ask_question(question): | |
prediction = pipeline.run(query=question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}}) | |
results = [] | |
for answer in prediction["answers"]: | |
answer = answer.to_dict() | |
if answer["answer"]: | |
results.append( | |
{ | |
"context": "..." + answer["context"] + "...", | |
"answer": answer["answer"], | |
"relevance": round(answer["score"] * 100, 2), | |
"offset_start_in_doc": answer["offsets_in_document"][0]["start"], | |
} | |
) | |
else: | |
results.append( | |
{ | |
"context": None, | |
"answer": None, | |
"relevance": round(answer["score"] * 100, 2), | |
} | |
) | |
return results | |
def app(): | |
with st.container(): | |
st.markdown("<h1 style='text-align: center; color: black;'> Keyword Search</h1>", unsafe_allow_html=True) | |
st.write(' ') | |
st.write(' ') | |
with st.expander("βΉοΈ - About this app", expanded=False): | |
st.write( | |
""" | |
The *Keyword Search* app is an easy-to-use interface built in Streamlit for doing keyword search in policy document - developed by GIZ Data and the Sustainable Development Solution Network. | |
""" | |
) | |
st.markdown("") | |
st.markdown("") | |
st.markdown("## π Step One: Upload document ") | |
with st.container(): | |
file = st.file_uploader('Upload PDF File', type=['pdf', 'docx', 'txt']) | |
if file is not None: | |
with tempfile.NamedTemporaryFile(mode="wb") as temp: | |
bytes_data = file.getvalue() | |
temp.write(bytes_data) | |
st.write("Filename: ", file.name) | |
# load document | |
documents = pre.load_document(temp.name, file) | |
documents_processed = pre.preprocessing(documents) | |
pipeline = start_haystack(documents_processed) | |
#docs = pre.load_document(temp.name, file) | |
# preprocess document | |
#haystackDoc, dataframeDoc, textData, paraList = clean.preprocessing(docs) | |
question = st.text_input("Please enter your question here, we will look for the answer in the document.", | |
value="floods",) | |
if st.button("Find them."): | |
with st.spinner("π Performing semantic search on"):#+file.name+"..."): | |
try: | |
msg = 'Asked ' + question | |
logging.info(msg) | |
st.session_state.results = ask_question(question) | |
except Exception as e: | |
logging.exception(e) | |
if st.session_state.results: | |
st.write('## Top Results') | |
for count, result in enumerate(st.session_state.results): | |
if result["answer"]: | |
answer, context = result["answer"], result["context"] | |
start_idx = context.find(answer) | |
end_idx = start_idx + len(answer) | |
st.write( | |
markdown(context[:start_idx] + str(annotation(body=answer, label="ANSWER", background="#964448", color='#ffffff')) + context[end_idx:]), | |
unsafe_allow_html=True, | |
) | |
st.markdown(f"**Relevance:** {result['relevance']}") | |
else: | |
st.info( | |
"π€ Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!" | |
) | |