Spaces:
Runtime error
Runtime error
Create new file
Browse files- appStore/sdg_analysis.py +179 -0
appStore/sdg_analysis.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# set path
|
2 |
+
import glob, os, sys; sys.path.append('../udfPreprocess')
|
3 |
+
|
4 |
+
#import helper
|
5 |
+
import udfPreprocess.docPreprocessing as pre
|
6 |
+
import udfPreprocess.cleaning as clean
|
7 |
+
|
8 |
+
#import needed libraries
|
9 |
+
import seaborn as sns
|
10 |
+
from pandas import DataFrame
|
11 |
+
from keybert import KeyBERT
|
12 |
+
from transformers import pipeline
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
import numpy as np
|
15 |
+
import streamlit as st
|
16 |
+
import pandas as pd
|
17 |
+
|
18 |
+
import tempfile
|
19 |
+
import sqlite3
|
20 |
+
|
21 |
+
def app():
|
22 |
+
|
23 |
+
with st.container():
|
24 |
+
st.markdown("<h1 style='text-align: center; color: black;'> Analyse Policy Document</h1>", unsafe_allow_html=True)
|
25 |
+
st.write(' ')
|
26 |
+
st.write(' ')
|
27 |
+
|
28 |
+
with st.expander("βΉοΈ - About this app", expanded=True):
|
29 |
+
|
30 |
+
st.write(
|
31 |
+
"""
|
32 |
+
The *Analyse Policy Document* app is an easy-to-use interface built in Streamlit for analyzing policy documents - developed by GIZ Data and the Sustainable Development Solution Network. \n
|
33 |
+
1. Keyword heatmap \n
|
34 |
+
2. SDG Classification for the paragraphs/texts in the document
|
35 |
+
"""
|
36 |
+
)
|
37 |
+
|
38 |
+
st.markdown("")
|
39 |
+
|
40 |
+
st.markdown("")
|
41 |
+
st.markdown("## π Step One: Upload document ")
|
42 |
+
|
43 |
+
with st.container():
|
44 |
+
|
45 |
+
file = st.file_uploader('Upload PDF File', type=['pdf', 'docx', 'txt'])
|
46 |
+
|
47 |
+
if file is not None:
|
48 |
+
|
49 |
+
|
50 |
+
with tempfile.NamedTemporaryFile(mode="wb") as temp:
|
51 |
+
bytes_data = file.getvalue()
|
52 |
+
temp.write(bytes_data)
|
53 |
+
|
54 |
+
st.write("Filename: ", file.name)
|
55 |
+
|
56 |
+
# load document
|
57 |
+
docs = pre.load_document(temp.name, file)
|
58 |
+
|
59 |
+
# preprocess document
|
60 |
+
docs_processed, df, all_text, par_list = clean.preprocessingForSDG(docs)
|
61 |
+
|
62 |
+
# testing
|
63 |
+
# st.write(len(all_text))
|
64 |
+
# for i in par_list:
|
65 |
+
# st.write(i)
|
66 |
+
|
67 |
+
@st.cache(allow_output_mutation=True)
|
68 |
+
def load_keyBert():
|
69 |
+
return KeyBERT()
|
70 |
+
|
71 |
+
kw_model = load_keyBert()
|
72 |
+
|
73 |
+
keywords = kw_model.extract_keywords(
|
74 |
+
all_text,
|
75 |
+
keyphrase_ngram_range=(1, 3),
|
76 |
+
use_mmr=True,
|
77 |
+
stop_words="english",
|
78 |
+
top_n=5,
|
79 |
+
diversity=0.7,
|
80 |
+
)
|
81 |
+
|
82 |
+
st.markdown("## π What is my document about?")
|
83 |
+
|
84 |
+
df = (
|
85 |
+
DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
|
86 |
+
.sort_values(by="Relevancy", ascending=False)
|
87 |
+
.reset_index(drop=True)
|
88 |
+
)
|
89 |
+
|
90 |
+
df.index += 1
|
91 |
+
|
92 |
+
# Add styling
|
93 |
+
cmGreen = sns.light_palette("green", as_cmap=True)
|
94 |
+
cmRed = sns.light_palette("red", as_cmap=True)
|
95 |
+
df = df.style.background_gradient(
|
96 |
+
cmap=cmGreen,
|
97 |
+
subset=[
|
98 |
+
"Relevancy",
|
99 |
+
],
|
100 |
+
)
|
101 |
+
c1, c2, c3 = st.columns([1, 3, 1])
|
102 |
+
|
103 |
+
format_dictionary = {
|
104 |
+
"Relevancy": "{:.1%}",
|
105 |
+
}
|
106 |
+
|
107 |
+
df = df.format(format_dictionary)
|
108 |
+
|
109 |
+
with c2:
|
110 |
+
st.table(df)
|
111 |
+
|
112 |
+
######## SDG classiciation
|
113 |
+
# @st.cache(allow_output_mutation=True)
|
114 |
+
# def load_sdgClassifier():
|
115 |
+
# classifier = pipeline("text-classification", model= "../models/osdg_sdg/")
|
116 |
+
|
117 |
+
# return classifier
|
118 |
+
|
119 |
+
# load from disc (github repo) for performance boost
|
120 |
+
@st.cache(allow_output_mutation=True)
|
121 |
+
def load_sdgClassifier():
|
122 |
+
classifier = pipeline("text-classification", model= "jonas/sdg_classifier_osdg")
|
123 |
+
|
124 |
+
return classifier
|
125 |
+
|
126 |
+
classifier = load_sdgClassifier()
|
127 |
+
|
128 |
+
# # not needed, par list comes from pre_processing function already
|
129 |
+
|
130 |
+
# word_list = all_text.split()
|
131 |
+
# len_word_list = len(word_list)
|
132 |
+
# par_list = []
|
133 |
+
# par_len = 130
|
134 |
+
# for i in range(0,len_word_list // par_len):
|
135 |
+
# string_part = ' '.join(word_list[i*par_len:(i+1)*par_len])
|
136 |
+
# par_list.append(string_part)
|
137 |
+
|
138 |
+
labels = classifier(par_list)
|
139 |
+
labels_= [(l['label'],l['score']) for l in labels]
|
140 |
+
df = DataFrame(labels_, columns=["SDG", "Relevancy"])
|
141 |
+
df['text'] = par_list
|
142 |
+
df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)
|
143 |
+
df.index += 1
|
144 |
+
df =df[df['Relevancy']>.85]
|
145 |
+
x = df['SDG'].value_counts()
|
146 |
+
|
147 |
+
plt.rcParams['font.size'] = 25
|
148 |
+
colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
|
149 |
+
# plot
|
150 |
+
fig, ax = plt.subplots()
|
151 |
+
ax.pie(x, colors=colors, radius=2, center=(4, 4),
|
152 |
+
wedgeprops={"linewidth": 1, "edgecolor": "white"}, frame=False,labels =list(x.index))
|
153 |
+
|
154 |
+
st.markdown("## π Anything related to SDGs?")
|
155 |
+
|
156 |
+
c4, c5, c6 = st.columns([5, 7, 1])
|
157 |
+
|
158 |
+
# Add styling
|
159 |
+
cmGreen = sns.light_palette("green", as_cmap=True)
|
160 |
+
cmRed = sns.light_palette("red", as_cmap=True)
|
161 |
+
df = df.style.background_gradient(
|
162 |
+
cmap=cmGreen,
|
163 |
+
subset=[
|
164 |
+
"Relevancy",
|
165 |
+
],
|
166 |
+
)
|
167 |
+
|
168 |
+
format_dictionary = {
|
169 |
+
"Relevancy": "{:.1%}",
|
170 |
+
}
|
171 |
+
|
172 |
+
df = df.format(format_dictionary)
|
173 |
+
|
174 |
+
with c4:
|
175 |
+
st.pyplot(fig)
|
176 |
+
with c5:
|
177 |
+
st.table(df)
|
178 |
+
|
179 |
+
|