Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,188 +1,15 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import pdfplumber
|
6 |
-
from pandas import DataFrame
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import numpy as np
|
9 |
-
import streamlit as st
|
10 |
-
import sentence-transformers
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
##@st.cache(allow_output_mutation=True)
|
15 |
-
def load_model():
|
16 |
-
return KeyBERT()
|
17 |
-
|
18 |
-
def read_(file):
|
19 |
-
if file is not None:
|
20 |
-
text = []
|
21 |
-
with pdfplumber.open(file) as pdf:
|
22 |
-
for page in pdf.pages:
|
23 |
-
text.append(page.extract_text())
|
24 |
-
text_str = ' '.join([page for page in text])
|
25 |
-
st.write('Document:', pdf.metadata)
|
26 |
-
st.write('Number of pages:',len(pdf.pages))
|
27 |
-
pdf.close()
|
28 |
-
return text_str
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
st.sidebar.image(
|
33 |
-
"https://github.com/gizdatalab/policy_tracing/blob/main/img/sdsn.png?raw=true",
|
34 |
-
use_column_width=True
|
35 |
-
)
|
36 |
-
st.sidebar.markdown("## π Step One: Upload document ")
|
37 |
-
|
38 |
-
with st.sidebar:
|
39 |
-
file = st.file_uploader('Upload PDF File', type=['pdf'])
|
40 |
-
|
41 |
-
st.sidebar.title(
|
42 |
-
"Options:"
|
43 |
-
)
|
44 |
-
|
45 |
-
st.sidebar.markdown(
|
46 |
-
"You can freely browse the different chapters - ie example prompts from different people - and see the results."
|
47 |
-
)
|
48 |
-
|
49 |
-
selected_date = st.sidebar.selectbox(
|
50 |
-
"Please select the chapter you want to read:",
|
51 |
-
['c1','c2']
|
52 |
-
)
|
53 |
-
|
54 |
-
with st.container():
|
55 |
-
st.markdown("<h1 style='text-align: center; color: black;'> SDSN X GIZ - Policy Action Tracking</h1>", unsafe_allow_html=True)
|
56 |
-
st.write(' ')
|
57 |
-
st.write(' ')
|
58 |
-
|
59 |
-
with st.expander("βΉοΈ - About this app", expanded=True):
|
60 |
-
|
61 |
-
st.write(
|
62 |
-
"""
|
63 |
-
The *Policy Action Tracker* app is an easy-to-use interface built with Streamlit for analyzing policy documents - developed by GIZ Data and the Sustainable Development Solution Network.
|
64 |
-
|
65 |
-
It uses a minimal keyword extraction technique that leverages multiple NLP embeddings and relies on [Transformers] (https://huggingface.co/transformers/) π€ to create keywords/keyphrases that are most similar to a document.
|
66 |
-
"""
|
67 |
-
)
|
68 |
-
|
69 |
-
st.markdown("")
|
70 |
-
st.markdown("")
|
71 |
-
#st.markdown("## π Step One: Upload document ")
|
72 |
-
|
73 |
-
|
74 |
-
with st.container():
|
75 |
-
st.markdown("## π Step One: Upload document ")
|
76 |
-
##file = st.file_uploader('Upload PDF File', type=['pdf'])
|
77 |
-
text_str = read_(file)
|
78 |
-
|
79 |
-
|
80 |
-
import seaborn as sns
|
81 |
-
import pdfplumber
|
82 |
-
from pandas import DataFrame
|
83 |
-
from keybert import KeyBERT
|
84 |
-
import matplotlib.pyplot as plt
|
85 |
-
import numpy as np
|
86 |
import streamlit as st
|
87 |
|
|
|
88 |
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
kw_model = load_model()
|
95 |
-
|
96 |
-
keywords = kw_model.extract_keywords(
|
97 |
-
text_str,
|
98 |
-
keyphrase_ngram_range=(1, 2),
|
99 |
-
use_mmr=True,
|
100 |
-
stop_words="english",
|
101 |
-
top_n=10,
|
102 |
-
diversity=0.7,
|
103 |
-
)
|
104 |
-
|
105 |
-
st.markdown("## π What is my document about?")
|
106 |
-
|
107 |
-
df = (
|
108 |
-
DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
|
109 |
-
.sort_values(by="Relevancy", ascending=False)
|
110 |
-
.reset_index(drop=True)
|
111 |
-
)
|
112 |
-
|
113 |
-
df.index += 1
|
114 |
-
|
115 |
-
# Add styling
|
116 |
-
cmGreen = sns.light_palette("green", as_cmap=True)
|
117 |
-
cmRed = sns.light_palette("red", as_cmap=True)
|
118 |
-
df = df.style.background_gradient(
|
119 |
-
cmap=cmGreen,
|
120 |
-
subset=[
|
121 |
-
"Relevancy",
|
122 |
-
],
|
123 |
-
)
|
124 |
-
c1, c2, c3 = st.columns([1, 3, 1])
|
125 |
-
|
126 |
-
format_dictionary = {
|
127 |
-
"Relevancy": "{:.1%}",
|
128 |
-
}
|
129 |
-
|
130 |
-
df = df.format(format_dictionary)
|
131 |
-
|
132 |
-
with c2:
|
133 |
-
st.table(df)
|
134 |
-
|
135 |
-
######## SDG!
|
136 |
-
from transformers import pipeline
|
137 |
-
|
138 |
-
finetuned_checkpoint = "jonas/sdg_classifier_osdg"
|
139 |
-
classifier = pipeline("text-classification", model=finetuned_checkpoint)
|
140 |
-
|
141 |
-
word_list = text_str.split()
|
142 |
-
len_word_list = len(word_list)
|
143 |
-
par_list = []
|
144 |
-
par_len = 130
|
145 |
-
for i in range(0,len_word_list // par_len):
|
146 |
-
string_part = ' '.join(word_list[i*par_len:(i+1)*par_len])
|
147 |
-
par_list.append(string_part)
|
148 |
-
|
149 |
-
labels = classifier(par_list)
|
150 |
-
labels_= [(l['label'],l['score']) for l in labels]
|
151 |
-
df = DataFrame(labels_, columns=["SDG", "Relevancy"])
|
152 |
-
df['text'] = ['... '+par+' ...' for par in par_list]
|
153 |
-
df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)
|
154 |
-
df.index += 1
|
155 |
-
df =df[df['Relevancy']>.9]
|
156 |
-
x = df['SDG'].value_counts()
|
157 |
-
|
158 |
-
plt.rcParams['font.size'] = 25
|
159 |
-
colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
|
160 |
-
# plot
|
161 |
-
fig, ax = plt.subplots()
|
162 |
-
ax.pie(x, colors=colors, radius=2, center=(4, 4),
|
163 |
-
wedgeprops={"linewidth": 1, "edgecolor": "white"}, frame=False,labels =list(x.index))
|
164 |
-
|
165 |
-
st.markdown("## π Anything related to SDGs?")
|
166 |
-
|
167 |
-
c4, c5, c6 = st.columns([5, 7, 1])
|
168 |
-
|
169 |
-
# Add styling
|
170 |
-
cmGreen = sns.light_palette("green", as_cmap=True)
|
171 |
-
cmRed = sns.light_palette("red", as_cmap=True)
|
172 |
-
df = df.style.background_gradient(
|
173 |
-
cmap=cmGreen,
|
174 |
-
subset=[
|
175 |
-
"Relevancy",
|
176 |
-
],
|
177 |
-
)
|
178 |
-
|
179 |
-
format_dictionary = {
|
180 |
-
"Relevancy": "{:.1%}",
|
181 |
-
}
|
182 |
-
|
183 |
-
df = df.format(format_dictionary)
|
184 |
|
185 |
-
|
186 |
-
st.pyplot(fig)
|
187 |
-
with c5:
|
188 |
-
st.table(df)
|
|
|
1 |
+
import appStore.keyword_search as keyword_search
|
2 |
+
import appStore.sdg_analysis as sdg_analysis
|
3 |
+
# import appStore.check_site as check_site
|
4 |
+
from appStore.multiapp import MultiApp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import streamlit as st
|
6 |
|
7 |
+
st.set_page_config(f'SDSN x GIZ Policy Tracing', layout="wide")
|
8 |
|
9 |
+
app = MultiApp()
|
10 |
|
11 |
+
app.add_app("Analyse Policy Document", sdg_analysis.app)
|
12 |
+
app.add_app("KeyWord Search", keyword_search.app)
|
13 |
+
# app.add_app("Check Coherence", check_site.app)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
app.run()
|
|
|
|
|
|