Spaces:
Runtime error
Runtime error
Create new file
Browse files- scripts/clean.py +143 -0
scripts/clean.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
import string
|
| 4 |
+
import nltk
|
| 5 |
+
import spacy
|
| 6 |
+
import en_core_web_sm
|
| 7 |
+
import re
|
| 8 |
+
import streamlit as st
|
| 9 |
+
|
| 10 |
+
from haystack.nodes import PreProcessor
|
| 11 |
+
|
| 12 |
+
'''basic cleaning - suitable for transformer models'''
|
| 13 |
+
def basic(s):
|
| 14 |
+
"""
|
| 15 |
+
:param s: string to be processed
|
| 16 |
+
:return: processed string: see comments in the source code for more info
|
| 17 |
+
"""
|
| 18 |
+
# Text Lowercase
|
| 19 |
+
#s = s.lower()
|
| 20 |
+
# Remove punctuation
|
| 21 |
+
#translator = str.maketrans(' ', ' ', string.punctuation)
|
| 22 |
+
#s = s.translate(translator)
|
| 23 |
+
# Remove URLs
|
| 24 |
+
s = re.sub(r'^https?:\/\/.*[\r\n]*', ' ', s, flags=re.MULTILINE)
|
| 25 |
+
s = re.sub(r"http\S+", " ", s)
|
| 26 |
+
# Remove new line characters
|
| 27 |
+
#s = re.sub('\n', ' ', s)
|
| 28 |
+
|
| 29 |
+
# Remove distracting single quotes
|
| 30 |
+
#s = re.sub("\'", " ", s)
|
| 31 |
+
# Remove all remaining numbers and non alphanumeric characters
|
| 32 |
+
#s = re.sub(r'\d+', ' ', s)
|
| 33 |
+
#s = re.sub(r'\W+', ' ', s)
|
| 34 |
+
|
| 35 |
+
# define custom words to replace:
|
| 36 |
+
#s = re.sub(r'strengthenedstakeholder', 'strengthened stakeholder', s)
|
| 37 |
+
|
| 38 |
+
return s.strip()
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def preprocessingForSDG(document):
|
| 42 |
+
|
| 43 |
+
"""
|
| 44 |
+
takes in haystack document object and splits it into paragraphs and applies simple cleaning.
|
| 45 |
+
Returns cleaned list of haystack document objects. One paragraph per object. Also returns pandas df and
|
| 46 |
+
list that contains all text joined together.
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
preprocessor = PreProcessor(
|
| 50 |
+
clean_empty_lines=True,
|
| 51 |
+
clean_whitespace=True,
|
| 52 |
+
clean_header_footer=True,
|
| 53 |
+
split_by="word",
|
| 54 |
+
split_length=100,
|
| 55 |
+
split_respect_sentence_boundary=True,
|
| 56 |
+
split_overlap=4
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
for i in document:
|
| 60 |
+
docs_processed = preprocessor.process([i])
|
| 61 |
+
for item in docs_processed:
|
| 62 |
+
item.content = basic(item.content)
|
| 63 |
+
|
| 64 |
+
st.write("your document has been splitted to", len(docs_processed), "paragraphs")
|
| 65 |
+
|
| 66 |
+
# create dataframe of text and list of all text
|
| 67 |
+
df = pd.DataFrame(docs_processed)
|
| 68 |
+
all_text = " ".join(df.content.to_list())
|
| 69 |
+
par_list = df.content.to_list()
|
| 70 |
+
|
| 71 |
+
return docs_processed, df, all_text, par_list
|
| 72 |
+
|
| 73 |
+
def preprocessing(document):
|
| 74 |
+
|
| 75 |
+
"""
|
| 76 |
+
takes in haystack document object and splits it into paragraphs and applies simple cleaning.
|
| 77 |
+
Returns cleaned list of haystack document objects. One paragraph per object. Also returns pandas df and
|
| 78 |
+
list that contains all text joined together.
|
| 79 |
+
"""
|
| 80 |
+
|
| 81 |
+
preprocessor = PreProcessor(
|
| 82 |
+
clean_empty_lines=True,
|
| 83 |
+
clean_whitespace=True,
|
| 84 |
+
clean_header_footer=True,
|
| 85 |
+
split_by="sentence",
|
| 86 |
+
split_length=3,
|
| 87 |
+
split_respect_sentence_boundary=True,
|
| 88 |
+
split_overlap=1
|
| 89 |
+
)
|
| 90 |
+
for i in document:
|
| 91 |
+
docs_processed = preprocessor.process([i])
|
| 92 |
+
for item in docs_processed:
|
| 93 |
+
item.content = basic(item.content)
|
| 94 |
+
|
| 95 |
+
st.write("your document has been splitted to", len(docs_processed), "paragraphs")
|
| 96 |
+
|
| 97 |
+
# create dataframe of text and list of all text
|
| 98 |
+
df = pd.DataFrame(docs_processed)
|
| 99 |
+
all_text = " ".join(df.content.to_list())
|
| 100 |
+
par_list = df.content.to_list()
|
| 101 |
+
|
| 102 |
+
return docs_processed, df, all_text, par_list
|
| 103 |
+
|
| 104 |
+
'''processing with spacy - suitable for models such as tf-idf, word2vec'''
|
| 105 |
+
def spacy_clean(alpha:str, use_nlp:bool = True) -> str:
|
| 106 |
+
|
| 107 |
+
"""
|
| 108 |
+
Clean and tokenise a string using Spacy. Keeps only alphabetic characters, removes stopwords and
|
| 109 |
+
filters out all but proper nouns, nounts, verbs and adjectives.
|
| 110 |
+
Parameters
|
| 111 |
+
----------
|
| 112 |
+
alpha : str
|
| 113 |
+
The input string.
|
| 114 |
+
use_nlp : bool, default False
|
| 115 |
+
Indicates whether Spacy needs to use NLP. Enable this when using this function on its own.
|
| 116 |
+
Should be set to False if used inside nlp.pipeline
|
| 117 |
+
Returns
|
| 118 |
+
-------
|
| 119 |
+
' '.join(beta) : a concatenated list of lemmatised tokens, i.e. a processed string
|
| 120 |
+
Notes
|
| 121 |
+
-----
|
| 122 |
+
Fails if alpha is an NA value. Performance decreases as len(alpha) gets large.
|
| 123 |
+
Use together with nlp.pipeline for batch processing.
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
nlp = spacy.load("en_core_web_sm", disable=["parser", "ner", "textcat"])
|
| 127 |
+
|
| 128 |
+
if use_nlp:
|
| 129 |
+
|
| 130 |
+
alpha = nlp(alpha)
|
| 131 |
+
|
| 132 |
+
beta = []
|
| 133 |
+
|
| 134 |
+
for tok in alpha:
|
| 135 |
+
|
| 136 |
+
if all([tok.is_alpha, not tok.is_stop, tok.pos_ in ['PROPN', 'NOUN', 'VERB', 'ADJ']]):
|
| 137 |
+
|
| 138 |
+
beta.append(tok.lemma_)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
text = ' '.join(beta)
|
| 142 |
+
text = text.lower()
|
| 143 |
+
return text
|