peter2000 commited on
Commit
68739a8
1 Parent(s): 3e0a87b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -10
app.py CHANGED
@@ -15,16 +15,7 @@ import streamlit as st
15
  def load_model():
16
  return KeyBERT()
17
 
18
- kw_model = load_model()
19
 
20
- keywords = kw_model.extract_keywords(
21
- text_str,
22
- keyphrase_ngram_range=(1, 2),
23
- use_mmr=True,
24
- stop_words="english",
25
- top_n=15,
26
- diversity=0.7,
27
- )
28
 
29
  with st.container():
30
  st.markdown("<h1 style='text-align: center; color: black;'> Policy Action Tracking</h1>", unsafe_allow_html=True)
@@ -35,7 +26,7 @@ with st.expander("ℹ️ - About this app", expanded=True):
35
 
36
  st.write(
37
  """
38
- The *Policy Action Tracker* app is an easy-to-use interface built in Streamlit for analyzing policy documents - developed by GIZ Data and the Sustainable Development Solution Network.
39
 
40
  It uses a minimal keyword extraction technique that leverages multiple NLP embeddings and relies on [Transformers] (https://huggingface.co/transformers/) 🤗 to create keywords/keyphrases that are most similar to a document.
41
  """
 
15
  def load_model():
16
  return KeyBERT()
17
 
 
18
 
 
 
 
 
 
 
 
 
19
 
20
  with st.container():
21
  st.markdown("<h1 style='text-align: center; color: black;'> Policy Action Tracking</h1>", unsafe_allow_html=True)
 
26
 
27
  st.write(
28
  """
29
+ The *Policy Action Tracker* app is an easy-to-use interface built with Streamlit for analyzing policy documents - developed by GIZ Data and the Sustainable Development Solution Network.
30
 
31
  It uses a minimal keyword extraction technique that leverages multiple NLP embeddings and relies on [Transformers] (https://huggingface.co/transformers/) 🤗 to create keywords/keyphrases that are most similar to a document.
32
  """