Spaces:
Runtime error
Runtime error
Create new file
Browse files- udfPreprocess/cleaning,py +144 -0
udfPreprocess/cleaning,py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import string
|
4 |
+
import nltk
|
5 |
+
import spacy
|
6 |
+
import en_core_web_sm
|
7 |
+
import re
|
8 |
+
import streamlit as st
|
9 |
+
|
10 |
+
from haystack.nodes import PreProcessor
|
11 |
+
|
12 |
+
'''basic cleaning - suitable for transformer models'''
|
13 |
+
def basic(s):
|
14 |
+
"""
|
15 |
+
:param s: string to be processed
|
16 |
+
:return: processed string: see comments in the source code for more info
|
17 |
+
"""
|
18 |
+
# Text Lowercase
|
19 |
+
#s = s.lower()
|
20 |
+
# Remove punctuation
|
21 |
+
#translator = str.maketrans(' ', ' ', string.punctuation)
|
22 |
+
#s = s.translate(translator)
|
23 |
+
# Remove URLs
|
24 |
+
s = re.sub(r'^https?:\/\/.*[\r\n]*', ' ', s, flags=re.MULTILINE)
|
25 |
+
s = re.sub(r"http\S+", " ", s)
|
26 |
+
# Remove new line characters
|
27 |
+
#s = re.sub('\n', ' ', s)
|
28 |
+
|
29 |
+
# Remove distracting single quotes
|
30 |
+
#s = re.sub("\'", " ", s)
|
31 |
+
# Remove all remaining numbers and non alphanumeric characters
|
32 |
+
#s = re.sub(r'\d+', ' ', s)
|
33 |
+
#s = re.sub(r'\W+', ' ', s)
|
34 |
+
|
35 |
+
# define custom words to replace:
|
36 |
+
#s = re.sub(r'strengthenedstakeholder', 'strengthened stakeholder', s)
|
37 |
+
|
38 |
+
return s.strip()
|
39 |
+
|
40 |
+
|
41 |
+
def preprocessingForSDG(document):
|
42 |
+
|
43 |
+
"""
|
44 |
+
takes in haystack document object and splits it into paragraphs and applies simple cleaning.
|
45 |
+
Returns cleaned list of haystack document objects. One paragraph per object. Also returns pandas df and
|
46 |
+
list that contains all text joined together.
|
47 |
+
"""
|
48 |
+
|
49 |
+
preprocessor = PreProcessor(
|
50 |
+
clean_empty_lines=True,
|
51 |
+
clean_whitespace=True,
|
52 |
+
clean_header_footer=True,
|
53 |
+
split_by="word",
|
54 |
+
split_length=100,
|
55 |
+
split_respect_sentence_boundary=True,
|
56 |
+
split_overlap=4
|
57 |
+
)
|
58 |
+
for i in document:
|
59 |
+
docs_processed = preprocessor.process([i])
|
60 |
+
for item in docs_processed:
|
61 |
+
item.content = basic(item.content)
|
62 |
+
|
63 |
+
st.write("your document has been splitted to", len(docs_processed), "paragraphs")
|
64 |
+
|
65 |
+
# create dataframe of text and list of all text
|
66 |
+
df = pd.DataFrame(docs_processed)
|
67 |
+
all_text = " ".join(df.content.to_list())
|
68 |
+
par_list = df.content.to_list()
|
69 |
+
|
70 |
+
return docs_processed, df, all_text, par_list
|
71 |
+
|
72 |
+
def preprocessing(document):
|
73 |
+
|
74 |
+
"""
|
75 |
+
takes in haystack document object and splits it into paragraphs and applies simple cleaning.
|
76 |
+
Returns cleaned list of haystack document objects. One paragraph per object. Also returns pandas df and
|
77 |
+
list that contains all text joined together.
|
78 |
+
"""
|
79 |
+
|
80 |
+
preprocessor = PreProcessor(
|
81 |
+
clean_empty_lines=True,
|
82 |
+
clean_whitespace=True,
|
83 |
+
clean_header_footer=True,
|
84 |
+
split_by="sentence",
|
85 |
+
split_length=3,
|
86 |
+
split_respect_sentence_boundary=False,
|
87 |
+
split_overlap=1
|
88 |
+
)
|
89 |
+
for i in document:
|
90 |
+
docs_processed = preprocessor.process([i])
|
91 |
+
for item in docs_processed:
|
92 |
+
item.content = basic(item.content)
|
93 |
+
|
94 |
+
st.write("your document has been splitted to", len(docs_processed), "paragraphs")
|
95 |
+
|
96 |
+
# create dataframe of text and list of all text
|
97 |
+
df = pd.DataFrame(docs_processed)
|
98 |
+
all_text = " ".join(df.content.to_list())
|
99 |
+
par_list = df.content.to_list()
|
100 |
+
|
101 |
+
return docs_processed, df, all_text, par_list
|
102 |
+
|
103 |
+
'''processing with spacy - suitable for models such as tf-idf, word2vec'''
|
104 |
+
def spacy_clean(alpha:str, use_nlp:bool = True) -> str:
|
105 |
+
|
106 |
+
"""
|
107 |
+
Clean and tokenise a string using Spacy. Keeps only alphabetic characters, removes stopwords and
|
108 |
+
filters out all but proper nouns, nounts, verbs and adjectives.
|
109 |
+
Parameters
|
110 |
+
----------
|
111 |
+
alpha : str
|
112 |
+
The input string.
|
113 |
+
use_nlp : bool, default False
|
114 |
+
Indicates whether Spacy needs to use NLP. Enable this when using this function on its own.
|
115 |
+
Should be set to False if used inside nlp.pipeline
|
116 |
+
Returns
|
117 |
+
-------
|
118 |
+
' '.join(beta) : a concatenated list of lemmatised tokens, i.e. a processed string
|
119 |
+
Notes
|
120 |
+
-----
|
121 |
+
Fails if alpha is an NA value. Performance decreases as len(alpha) gets large.
|
122 |
+
Use together with nlp.pipeline for batch processing.
|
123 |
+
"""
|
124 |
+
|
125 |
+
nlp = spacy.load("en_core_web_sm", disable=["parser", "ner", "textcat"])
|
126 |
+
|
127 |
+
if use_nlp:
|
128 |
+
|
129 |
+
alpha = nlp(alpha)
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
beta = []
|
134 |
+
|
135 |
+
for tok in alpha:
|
136 |
+
|
137 |
+
if all([tok.is_alpha, not tok.is_stop, tok.pos_ in ['PROPN', 'NOUN', 'VERB', 'ADJ']]):
|
138 |
+
|
139 |
+
beta.append(tok.lemma_)
|
140 |
+
|
141 |
+
|
142 |
+
text = ' '.join(beta)
|
143 |
+
text = text.lower()
|
144 |
+
return text
|