Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,10 +4,10 @@ st.set_page_config(f'SDSN x GIZ Policy Tracing', layout="wide")
|
|
4 |
import seaborn as sns
|
5 |
import pdfplumber
|
6 |
from pandas import DataFrame
|
7 |
-
from keybert import KeyBERT
|
8 |
import matplotlib.pyplot as plt
|
9 |
import numpy as np
|
10 |
import streamlit as st
|
|
|
11 |
|
12 |
|
13 |
|
@@ -68,11 +68,121 @@ with st.expander("βΉοΈ - About this app", expanded=True):
|
|
68 |
|
69 |
st.markdown("")
|
70 |
st.markdown("")
|
71 |
-
st.markdown("## π Step One: Upload document ")
|
72 |
|
73 |
|
74 |
with st.container():
|
75 |
st.markdown("## π Step One: Upload document ")
|
76 |
##file = st.file_uploader('Upload PDF File', type=['pdf'])
|
77 |
text_str = read_(file)
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import seaborn as sns
|
5 |
import pdfplumber
|
6 |
from pandas import DataFrame
|
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
import numpy as np
|
9 |
import streamlit as st
|
10 |
+
import sentence-transformers
|
11 |
|
12 |
|
13 |
|
|
|
68 |
|
69 |
st.markdown("")
|
70 |
st.markdown("")
|
71 |
+
#st.markdown("## π Step One: Upload document ")
|
72 |
|
73 |
|
74 |
with st.container():
|
75 |
st.markdown("## π Step One: Upload document ")
|
76 |
##file = st.file_uploader('Upload PDF File', type=['pdf'])
|
77 |
text_str = read_(file)
|
78 |
+
|
79 |
+
|
80 |
+
import seaborn as sns
|
81 |
+
import pdfplumber
|
82 |
+
from pandas import DataFrame
|
83 |
+
from keybert import KeyBERT
|
84 |
+
import matplotlib.pyplot as plt
|
85 |
+
import numpy as np
|
86 |
+
import streamlit as st
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
@st.cache(allow_output_mutation=True)
|
91 |
+
def load_model():
|
92 |
+
return KeyBERT()
|
93 |
+
|
94 |
+
kw_model = load_model()
|
95 |
+
|
96 |
+
keywords = kw_model.extract_keywords(
|
97 |
+
text_str,
|
98 |
+
keyphrase_ngram_range=(1, 2),
|
99 |
+
use_mmr=True,
|
100 |
+
stop_words="english",
|
101 |
+
top_n=10,
|
102 |
+
diversity=0.7,
|
103 |
+
)
|
104 |
+
|
105 |
+
st.markdown("## π What is my document about?")
|
106 |
+
|
107 |
+
df = (
|
108 |
+
DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
|
109 |
+
.sort_values(by="Relevancy", ascending=False)
|
110 |
+
.reset_index(drop=True)
|
111 |
+
)
|
112 |
+
|
113 |
+
df.index += 1
|
114 |
+
|
115 |
+
# Add styling
|
116 |
+
cmGreen = sns.light_palette("green", as_cmap=True)
|
117 |
+
cmRed = sns.light_palette("red", as_cmap=True)
|
118 |
+
df = df.style.background_gradient(
|
119 |
+
cmap=cmGreen,
|
120 |
+
subset=[
|
121 |
+
"Relevancy",
|
122 |
+
],
|
123 |
+
)
|
124 |
+
c1, c2, c3 = st.columns([1, 3, 1])
|
125 |
+
|
126 |
+
format_dictionary = {
|
127 |
+
"Relevancy": "{:.1%}",
|
128 |
+
}
|
129 |
+
|
130 |
+
df = df.format(format_dictionary)
|
131 |
+
|
132 |
+
with c2:
|
133 |
+
st.table(df)
|
134 |
+
|
135 |
+
######## SDG!
|
136 |
+
from transformers import pipeline
|
137 |
+
|
138 |
+
finetuned_checkpoint = "jonas/sdg_classifier_osdg"
|
139 |
+
classifier = pipeline("text-classification", model=finetuned_checkpoint)
|
140 |
+
|
141 |
+
word_list = text_str.split()
|
142 |
+
len_word_list = len(word_list)
|
143 |
+
par_list = []
|
144 |
+
par_len = 130
|
145 |
+
for i in range(0,len_word_list // par_len):
|
146 |
+
string_part = ' '.join(word_list[i*par_len:(i+1)*par_len])
|
147 |
+
par_list.append(string_part)
|
148 |
+
|
149 |
+
labels = classifier(par_list)
|
150 |
+
labels_= [(l['label'],l['score']) for l in labels]
|
151 |
+
df = DataFrame(labels_, columns=["SDG", "Relevancy"])
|
152 |
+
df['text'] = ['... '+par+' ...' for par in par_list]
|
153 |
+
df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)
|
154 |
+
df.index += 1
|
155 |
+
df =df[df['Relevancy']>.9]
|
156 |
+
x = df['SDG'].value_counts()
|
157 |
+
|
158 |
+
plt.rcParams['font.size'] = 25
|
159 |
+
colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
|
160 |
+
# plot
|
161 |
+
fig, ax = plt.subplots()
|
162 |
+
ax.pie(x, colors=colors, radius=2, center=(4, 4),
|
163 |
+
wedgeprops={"linewidth": 1, "edgecolor": "white"}, frame=False,labels =list(x.index))
|
164 |
+
|
165 |
+
st.markdown("## π Anything related to SDGs?")
|
166 |
+
|
167 |
+
c4, c5, c6 = st.columns([5, 7, 1])
|
168 |
+
|
169 |
+
# Add styling
|
170 |
+
cmGreen = sns.light_palette("green", as_cmap=True)
|
171 |
+
cmRed = sns.light_palette("red", as_cmap=True)
|
172 |
+
df = df.style.background_gradient(
|
173 |
+
cmap=cmGreen,
|
174 |
+
subset=[
|
175 |
+
"Relevancy",
|
176 |
+
],
|
177 |
+
)
|
178 |
+
|
179 |
+
format_dictionary = {
|
180 |
+
"Relevancy": "{:.1%}",
|
181 |
+
}
|
182 |
+
|
183 |
+
df = df.format(format_dictionary)
|
184 |
+
|
185 |
+
with c4:
|
186 |
+
st.pyplot(fig)
|
187 |
+
with c5:
|
188 |
+
st.table(df)
|