Spaces:
Runtime error
Runtime error
Update appStore/keyword_search.py
Browse files- appStore/keyword_search.py +67 -136
appStore/keyword_search.py
CHANGED
@@ -24,6 +24,43 @@ import numpy as np
|
|
24 |
import tempfile
|
25 |
import sqlite3
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def app():
|
28 |
|
29 |
with st.container():
|
@@ -58,151 +95,45 @@ def app():
|
|
58 |
st.write("Filename: ", file.name)
|
59 |
|
60 |
# load document
|
61 |
-
|
|
|
62 |
|
63 |
# preprocess document
|
64 |
-
haystackDoc, dataframeDoc, textData, paraList = clean.preprocessing(docs)
|
65 |
|
66 |
-
|
67 |
-
# st.write(len(all_text))
|
68 |
-
# for i in par_list:
|
69 |
-
# st.write(i)
|
70 |
|
71 |
-
|
72 |
value="floods",)
|
73 |
|
74 |
-
@st.cache(allow_output_mutation=True)
|
75 |
-
def load_sentenceTransformer(name):
|
76 |
-
return SentenceTransformer(name)
|
77 |
-
|
78 |
-
bi_encoder = load_sentenceTransformer('msmarco-distilbert-cos-v5') # multi-qa-MiniLM-L6-cos-v1
|
79 |
-
bi_encoder.max_seq_length = 64 #Truncate long passages to 256 tokens
|
80 |
-
top_k = 32
|
81 |
-
|
82 |
-
#@st.cache(allow_output_mutation=True)
|
83 |
-
#def load_crossEncoder(name):
|
84 |
-
# return CrossEncoder(name)
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
|
95 |
-
tokenized_doc.append(token)
|
96 |
-
return tokenized_doc
|
97 |
|
98 |
-
def bm25TokenizeDoc(paraList):
|
99 |
-
tokenized_corpus = []
|
100 |
-
for passage in tqdm(paraList):
|
101 |
-
if len(passage.split()) >256:
|
102 |
-
temp = " ".join(passage.split()[:256])
|
103 |
-
tokenized_corpus.append(bm25_tokenizer(temp))
|
104 |
-
temp = " ".join(passage.split()[256:])
|
105 |
-
tokenized_corpus.append(bm25_tokenizer(temp))
|
106 |
-
else:
|
107 |
-
tokenized_corpus.append(bm25_tokenizer(passage))
|
108 |
-
|
109 |
-
return tokenized_corpus
|
110 |
|
111 |
-
tokenized_corpus = bm25TokenizeDoc(paraList)
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
hits = hits[0] # Get the hits for the first query
|
131 |
-
|
132 |
-
|
133 |
-
##### Re-Ranking #####
|
134 |
-
# Now, score all retrieved passages with the cross_encoder
|
135 |
-
#cross_inp = [[query, paraList[hit['corpus_id']]] for hit in hits]
|
136 |
-
#cross_scores = cross_encoder.predict(cross_inp)
|
137 |
-
|
138 |
-
# Sort results by the cross-encoder scores
|
139 |
-
#for idx in range(len(cross_scores)):
|
140 |
-
# hits[idx]['cross-score'] = cross_scores[idx]
|
141 |
-
|
142 |
-
|
143 |
-
return bm25_hits, hits
|
144 |
-
|
145 |
-
|
146 |
-
if st.button("Find them."):
|
147 |
-
bm25_hits, hits = search(keyword)
|
148 |
-
|
149 |
-
st.markdown("""
|
150 |
-
We will provide with 2 kind of results. The 'lexical search' and the semantic search.
|
151 |
-
""")
|
152 |
-
# In the semantic search part we provide two kind of results one with only Retriever (Bi-Encoder) and other the ReRanker (Cross Encoder)
|
153 |
-
st.markdown("Top few lexical search (BM25) hits")
|
154 |
-
for hit in bm25_hits[0:5]:
|
155 |
-
if hit['score'] > 0.00:
|
156 |
-
st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
# st.table(bm25_hits[0:3])
|
163 |
-
|
164 |
-
st.markdown("\n-------------------------\n")
|
165 |
-
st.markdown("Top few Bi-Encoder Retrieval hits")
|
166 |
-
|
167 |
-
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
|
168 |
-
for hit in hits[0:5]:
|
169 |
-
# if hit['score'] > 0.45:
|
170 |
-
st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
|
171 |
-
#st.table(hits[0:3]
|
172 |
-
|
173 |
-
#st.markdown("-------------------------")
|
174 |
-
|
175 |
-
#hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
|
176 |
-
#st.markdown("Top few Cross-Encoder Re-ranker hits")
|
177 |
-
#for hit in hits[0:3]:
|
178 |
-
# st.write("\t Score: {:.3f}: \t{}".format(hit['cross-score'], paraList[hit['corpus_id']].replace("\n", " ")))
|
179 |
-
#st.table(hits[0:3]
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
#for hit in bm25_hits[0:3]:
|
186 |
-
# print("\t{:.3f}\t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
# Output of top-5 hits from bi-encoder
|
195 |
-
#print("\n-------------------------\n")
|
196 |
-
#print("Top-3 Bi-Encoder Retrieval hits")
|
197 |
-
#hits = sorted(hits, key=lambda x: x['score'], reverse=True)
|
198 |
-
#for hit in hits[0:3]:
|
199 |
-
# print("\t{:.3f}\t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
|
200 |
-
|
201 |
-
# Output of top-5 hits from re-ranker
|
202 |
-
# print("\n-------------------------\n")
|
203 |
-
#print("Top-3 Cross-Encoder Re-ranker hits")
|
204 |
-
# hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
|
205 |
-
# for hit in hits[0:3]:
|
206 |
-
# print("\t{:.3f}\t{}".format(hit['cross-score'], paraList[hit['corpus_id']].replace("\n", " ")))
|
207 |
|
208 |
|
|
|
24 |
import tempfile
|
25 |
import sqlite3
|
26 |
|
27 |
+
#Haystack Components
|
28 |
+
@st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None},allow_output_mutation=True)
|
29 |
+
def start_haystack(temp.name, file):
|
30 |
+
document_store = InMemoryDocumentStore()
|
31 |
+
documents = pre.load_document(temp.name, file)
|
32 |
+
documents_processed = pre.preprocessing(documents)
|
33 |
+
document_store.write_documents(documents_processed)
|
34 |
+
retriever = TfidfRetriever(document_store=document_store)
|
35 |
+
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2-distilled", use_gpu=True)
|
36 |
+
pipeline = ExtractiveQAPipeline(reader, retriever)
|
37 |
+
return pipeline
|
38 |
+
|
39 |
+
|
40 |
+
def ask_question(question):
|
41 |
+
prediction = pipeline.run(query=question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}})
|
42 |
+
results = []
|
43 |
+
for answer in prediction["answers"]:
|
44 |
+
answer = answer.to_dict()
|
45 |
+
if answer["answer"]:
|
46 |
+
results.append(
|
47 |
+
{
|
48 |
+
"context": "..." + answer["context"] + "...",
|
49 |
+
"answer": answer["answer"],
|
50 |
+
"relevance": round(answer["score"] * 100, 2),
|
51 |
+
"offset_start_in_doc": answer["offsets_in_document"][0]["start"],
|
52 |
+
}
|
53 |
+
)
|
54 |
+
else:
|
55 |
+
results.append(
|
56 |
+
{
|
57 |
+
"context": None,
|
58 |
+
"answer": None,
|
59 |
+
"relevance": round(answer["score"] * 100, 2),
|
60 |
+
}
|
61 |
+
)
|
62 |
+
return results
|
63 |
+
|
64 |
def app():
|
65 |
|
66 |
with st.container():
|
|
|
95 |
st.write("Filename: ", file.name)
|
96 |
|
97 |
# load document
|
98 |
+
pipeline = start_haystack(temp.name, file)
|
99 |
+
#docs = pre.load_document(temp.name, file)
|
100 |
|
101 |
# preprocess document
|
102 |
+
#haystackDoc, dataframeDoc, textData, paraList = clean.preprocessing(docs)
|
103 |
|
104 |
+
|
|
|
|
|
|
|
105 |
|
106 |
+
question = st.text_input("Please enter your question here, we will look for the answer in the document.",
|
107 |
value="floods",)
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
if st.button("Find them."):
|
111 |
+
with st.spinner("👑 Performing semantic search on"):#+file.name+"..."):
|
112 |
+
try:
|
113 |
+
msg = 'Asked ' + question
|
114 |
+
logging.info(msg)
|
115 |
+
st.session_state.results = ask_question(question)
|
116 |
+
except Exception as e:
|
117 |
+
logging.exception(e)
|
|
|
|
|
|
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
|
|
120 |
|
121 |
+
if st.session_state.results:
|
122 |
+
st.write('## Top Results')
|
123 |
+
for count, result in enumerate(st.session_state.results):
|
124 |
+
if result["answer"]:
|
125 |
+
answer, context = result["answer"], result["context"]
|
126 |
+
start_idx = context.find(answer)
|
127 |
+
end_idx = start_idx + len(answer)
|
128 |
+
st.write(
|
129 |
+
markdown(context[:start_idx] + str(annotation(body=answer, label="ANSWER", background="#964448", color='#ffffff')) + context[end_idx:]),
|
130 |
+
unsafe_allow_html=True,
|
131 |
+
)
|
132 |
+
st.markdown(f"**Relevance:** {result['relevance']}")
|
133 |
+
else:
|
134 |
+
st.info(
|
135 |
+
"🤔 Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!"
|
136 |
+
)
|
137 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
|