import streamlit as st from typing import Callable, Dict, List, Optional import os from haystack.utils import fetch_archive_from_http, clean_wiki_text, convert_files_to_docs from haystack.schema import Answer from haystack.document_stores import InMemoryDocumentStore from haystack.pipelines import ExtractiveQAPipeline from haystack.nodes import FARMReader, TfidfRetriever import logging from markdown import markdown from annotated_text import annotation from PIL import Image os.environ['TOKENIZERS_PARALLELISM'] ="false" #def load_and_write_data(document_store): # doc_dir = './article_txt_got' # docs = convert_files_to_docs(dir_path=doc_dir, clean_func=clean_wiki_text, split_paragraphs=True) # document_store.write_documents(docs) def load_document( file_path: str, file_name, encoding: Optional[str] = None, id_hash_keys: Optional[List[str]] = None, ) -> List[Document]: """ takes docx, txt and pdf files as input and \ extracts text as well as the filename as metadata. \ Since haystack does not take care of all pdf files, \ pdfplumber is attached to the pipeline in case the pdf \ extraction fails via Haystack. Returns a list of type haystack.schema.Document """ if file_name.endswith('.pdf'): converter = PDFToTextConverter(remove_numeric_tables=True) if file_name.endswith('.txt'): converter = TextConverter() if file_name.endswith('.docx'): converter = DocxToTextConverter() documents = [] logger.info("Converting {}".format(file_name)) # PDFToTextConverter, TextConverter, and DocxToTextConverter # return a list containing a single Document document = converter.convert( file_path=file_path, meta=None, encoding=encoding, id_hash_keys=id_hash_keys )[0] text = document.content documents.append(Document(content=text, meta={"name": file_name}, id_hash_keys=id_hash_keys)) '''check if text is empty and apply different pdf processor. \ This can happen whith certain pdf types.''' for i in documents: if i.content == "": st.write("using pdfplumber") text = [] with pdfplumber.open(file_path) as pdf: for page in pdf.pages: text.append(page.extract_text()) i.content = ' '.join([page for page in text]) return documents def preprocessing(document): """ takes in haystack document object and splits it into paragraphs and applies simple cleaning. Returns cleaned list of haystack document objects. One paragraph per object. Also returns pandas df and list that contains all text joined together. """ preprocessor = PreProcessor( clean_empty_lines=True, clean_whitespace=True, clean_header_footer=True, split_by="sentence", split_length=3, split_respect_sentence_boundary=False, split_overlap=1 ) for i in document: docs_processed = preprocessor.process([i]) for item in docs_processed: item.content = basic(item.content) st.write("your document has been splitted to", len(docs_processed), "paragraphs") # create dataframe of text and list of all text #df = pd.DataFrame(docs_processed) #all_text = " ".join(df.content.to_list()) #par_list = df.content.to_list() return docs_processed #, df, all_text, par_list