File size: 4,168 Bytes
c9473c9
623e1bf
 
 
 
 
4d7e87d
623e1bf
4d7e87d
 
 
 
 
 
 
 
623e1bf
c333b0b
623e1bf
 
 
 
 
 
 
4d7e87d
c9473c9
 
f397a20
c9473c9
 
 
4d7e87d
 
 
 
 
 
 
f397a20
c9473c9
f397a20
c9473c9
 
 
 
 
 
4d7e87d
 
 
 
c333b0b
 
4d7e87d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c333b0b
f397a20
36a76ae
c333b0b
4d7e87d
36a76ae
4d7e87d
36a76ae
 
 
 
 
4d7e87d
 
 
36a76ae
4d7e87d
36a76ae
 
1018e38
36a76ae
 
 
 
 
4d7e87d
36a76ae
 
 
 
4d7e87d
 
 
36a76ae
 
 
623e1bf
 
c9473c9
e041428
c9473c9
36a76ae
4d7e87d
623e1bf
 
f397a20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import time
import torch
from transformers import AutoModelForImageSegmentation
from PIL import Image
from torchvision import transforms
import gradio as gr
import gc

def load_model():
    model = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet_lite', trust_remote_code=True)
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    model.to(device)
    model.eval()
    return model, device

birefnet, device = load_model()

# Preprocessing
image_size = (1024, 1024)
transform_image = transforms.Compose([
    transforms.Resize(image_size),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

def run_inference(images, model, device):
    inputs = []
    original_sizes = []
    for img in images:
        original_sizes.append(img.size)
        inputs.append(transform_image(img))
    input_tensor = torch.stack(inputs).to(device)
    try:
        with torch.no_grad():
            preds = model(input_tensor)[-1].sigmoid().cpu()
    except torch.OutOfMemoryError:
        del input_tensor
        torch.cuda.empty_cache()
        raise
    # Post-process
    results = []
    for i, img in enumerate(images):
        pred = preds[i].squeeze()
        pred_pil = transforms.ToPILImage()(pred)
        mask = pred_pil.resize(original_sizes[i])
        result = Image.new("RGBA", original_sizes[i], (0, 0, 0, 0))
        result.paste(img, mask=mask)
        results.append(result)
    # Cleanup
    del input_tensor, preds
    gc.collect()
    torch.cuda.empty_cache()
    return results

def binary_search_max(images):
    # After OOM, try to find max feasible batch
    low, high = 1, len(images)
    best = None
    best_count = 0
    while low <= high:
        mid = (low + high) // 2
        batch = images[:mid]
        try:
            # Re-load model to avoid leftover memory fragmentation
            global birefnet, device
            birefnet, device = load_model()
            res = run_inference(batch, birefnet, device)
            best = res
            best_count = mid
            low = mid + 1
        except torch.OutOfMemoryError:
            high = mid - 1
    return best, best_count

def extract_objects(filepaths):
    images = [Image.open(p).convert("RGB") for p in filepaths]
    start_time = time.time()

    # First attempt: all images
    try:
        results = run_inference(images, birefnet, device)
        end_time = time.time()
        total_time = end_time - start_time
        summary = f"Total request time: {total_time:.2f}s\nProcessed {len(images)} images successfully."
        return results, summary
    except torch.OutOfMemoryError:
        # OOM occurred, try to find feasible batch size now
        oom_time = time.time()
        initial_attempt_time = oom_time - start_time
        
        best, best_count = binary_search_max(images)
        end_time = time.time()
        total_time = end_time - start_time

        if best is None:
            # Not even 1 image works
            summary = (
                f"Initial attempt OOM after {initial_attempt_time:.2f}s.\n"
                f"Could not process even a single image.\n"
                f"Total time including fallback attempts: {total_time:.2f}s."
            )
            return [], summary
        else:
            summary = (
                f"Initial attempt OOM after {initial_attempt_time:.2f}s.\n"
                f"Found that {best_count} images can be processed without OOM.\n"
                f"Total time including fallback attempts: {total_time:.2f}s.\n"
                f"Next time, try using up to {best_count} images."
            )
            return best, summary

iface = gr.Interface(
    fn=extract_objects,
    inputs=gr.Files(label="Upload Multiple Images", type="filepath", file_count="multiple"),
    outputs=[gr.Gallery(label="Processed Images"), gr.Textbox(label="Timing Info")],
    title="BiRefNet Bulk Background Removal with On-Demand Fallback",
    description="Upload as many images as you want. If OOM occurs, a fallback will find the max feasible number. Extra cleanup steps and reinitialization for more consistent results."
)

iface.launch()