bgremoval / app.py
petergpt's picture
Update app.py
36a76ae verified
raw
history blame
3.8 kB
import time
import torch
from transformers import AutoModelForImageSegmentation
from PIL import Image
from torchvision import transforms
import gradio as gr
# Load the model
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet_lite', trust_remote_code=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
birefnet.to(device)
birefnet.eval()
# Preprocessing
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def run_inference(images):
# Convert all images into a batch tensor
inputs = []
original_sizes = []
for img in images:
original_sizes.append(img.size)
inputs.append(transform_image(img))
input_tensor = torch.stack(inputs).to(device)
# Run inference
with torch.no_grad():
preds = birefnet(input_tensor)[-1].sigmoid().cpu()
# Post-process
results = []
for i, img in enumerate(images):
pred = preds[i].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(original_sizes[i])
result = Image.new("RGBA", original_sizes[i], (0, 0, 0, 0))
result.paste(img, mask=mask)
results.append(result)
return results
def extract_objects(filepaths):
images = [Image.open(p).convert("RGB") for p in filepaths]
start_time = time.time()
# Attempt to process all at once
try:
results = run_inference(images)
end_time = time.time()
total_time = end_time - start_time
summary = f"Total request time: {total_time:.2f}s\nProcessed {len(images)} images successfully."
return results, summary
except torch.OutOfMemoryError:
# Only if we fail, do we attempt to find a feasible batch size
torch.cuda.empty_cache()
fail_time = time.time()
initial_attempt_time = fail_time - start_time
# Binary search to find max feasible batch size
low, high = 1, len(images)
best = None
best_count = 0
while low <= high:
mid = (low + high) // 2
batch = images[:mid]
try:
res = run_inference(batch)
best = res
best_count = mid
low = mid + 1 # try bigger
except torch.OutOfMemoryError:
torch.cuda.empty_cache()
high = mid - 1 # try smaller
end_time = time.time()
total_time = end_time - start_time
if best is None:
# Not even 1 image works
summary = (
f"Initial attempt OOM after {initial_attempt_time:.2f}s.\n"
f"Could not process even a single image.\n"
f"Total time with fallback attempts: {total_time:.2f}s."
)
return [], summary
else:
summary = (
f"Initial attempt OOM after {initial_attempt_time:.2f}s. "
f"After fallback tests, found that {best_count} images can be processed.\n"
f"Total time including fallback: {total_time:.2f}s.\n"
f"Next time, try using up to {best_count} images."
)
return best, summary
iface = gr.Interface(
fn=extract_objects,
inputs=gr.Files(label="Upload Multiple Images", type="filepath", file_count="multiple"),
outputs=[gr.Gallery(label="Processed Images"), gr.Textbox(label="Timing Info")],
title="BiRefNet Bulk Background Removal with On-Demand Fallback",
description="Upload as many images as you want. If OOM occurs, a quick fallback will find the max feasible number of images without adding overhead unless needed."
)
iface.launch()