bgremoval / app.py
petergpt's picture
Update app.py
ad7e684 verified
raw
history blame
1.36 kB
import torch
from transformers import AutoModelForImageSegmentation
from PIL import Image
from torchvision import transforms
import gradio as gr
# Load the model from Hugging Face
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet_lite', trust_remote_code=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
birefnet.to(device)
birefnet.eval()
# Define the transform to preprocess the input image
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def extract_object(image):
input_images = transform_image(image).unsqueeze(0).to(device)
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
image_with_alpha = image.convert("RGBA")
image_with_alpha.putalpha(mask)
return image_with_alpha
iface = gr.Interface(
fn=extract_object,
inputs=gr.Image(type="pil", label="Upload Image"),
outputs=gr.Image(type="pil", label="Segmented Image"),
title="BiRefNet Background Removal",
description="Upload an image and get the foreground object extracted."
)
if __name__ == "__main__":
iface.launch()