import time import gc import torch from PIL import Image from torchvision import transforms import gradio as gr from transformers import AutoConfig, AutoModelForImageSegmentation # 1) Wrap config loading in a helper that monkey-patches a dummy get_text_config(). def load_model(): config = AutoConfig.from_pretrained("zhengpeng7/BiRefNet_lite", trust_remote_code=True) config.is_encoder_decoder = False # We define a dummy function that returns a minimal object # with a tie_word_embeddings attribute, so tie_weights() won't fail. def dummy_text_config(decoder=True): class DummyTextConfig: tie_word_embeddings = False return DummyTextConfig() # Patch the config so huggingface code won't blow up setattr(config, "get_text_config", dummy_text_config) model = AutoModelForImageSegmentation.from_pretrained( "zhengpeng7/BiRefNet_lite", config=config, trust_remote_code=True ) device = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(device) model.eval() return model, device # 2) Initialize global model & device birefnet, device = load_model() # 3) Preprocessing transform image_size = (1024, 1024) transform_image = transforms.Compose([ transforms.Resize(image_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) def run_inference(images, model, device): inputs = [] original_sizes = [] for img in images: original_sizes.append(img.size) inputs.append(transform_image(img)) input_tensor = torch.stack(inputs).to(device) try: with torch.no_grad(): # If the model returns multiple outputs, adapt as needed output = model(input_tensor) # The last element might be your segmentation mask. Adjust if needed: # e.g. preds = output[-1] if it returns a list/tuple # or preds = output.logits if it returns a named field # The original example used `output[-1].sigmoid()`, so: preds = output[-1].sigmoid().cpu() except torch.OutOfMemoryError: del input_tensor torch.cuda.empty_cache() raise # Post-process results = [] for i, img in enumerate(images): pred = preds[i].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(original_sizes[i]) result = Image.new("RGBA", original_sizes[i], (0, 0, 0, 0)) result.paste(img, mask=mask) results.append(result) # Cleanup del input_tensor, preds gc.collect() torch.cuda.empty_cache() return results def binary_search_max(images): low, high = 1, len(images) best, best_count = None, 0 while low <= high: mid = (low + high) // 2 batch = images[:mid] try: # Re-load the model to avoid leftover memory fragmentation global birefnet, device birefnet, device = load_model() res = run_inference(batch, birefnet, device) best, best_count = res, mid low = mid + 1 except torch.OutOfMemoryError: high = mid - 1 return best, best_count def extract_objects(filepaths): images = [Image.open(p).convert("RGB") for p in filepaths] start_time = time.time() # First attempt: all images at once try: results = run_inference(images, birefnet, device) end_time = time.time() total_time = end_time - start_time summary = f"Total request time: {total_time:.2f}s\nProcessed {len(images)} images successfully." return results, summary except torch.OutOfMemoryError: # If it fails with OOM, do a fallback oom_time = time.time() initial_attempt_time = oom_time - start_time best, best_count = binary_search_max(images) end_time = time.time() total_time = end_time - start_time if best is None: # Not even 1 image can be processed summary = ( f"Initial attempt OOM after {initial_attempt_time:.2f}s.\n" f"Could not process even a single image.\n" f"Total time including fallback attempts: {total_time:.2f}s." ) return [], summary else: summary = ( f"Initial attempt OOM after {initial_attempt_time:.2f}s.\n" f"Found that {best_count} images can be processed without OOM.\n" f"Total time including fallback attempts: {total_time:.2f}s.\n" f"Next time, try using up to {best_count} images." ) return best, summary iface = gr.Interface( fn=extract_objects, inputs=gr.Files(label="Upload Multiple Images", type="filepath", file_count="multiple"), outputs=[gr.Gallery(label="Processed Images"), gr.Textbox(label="Timing Info")], title="BiRefNet Bulk Background Removal (with fallback)", description="Upload multiple images. If OOM occurs, we fallback to smaller batches." ) if __name__ == "__main__": iface.launch()