Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
import cv2
|
3 |
import gradio as gr
|
4 |
import os
|
@@ -13,6 +12,7 @@ import warnings
|
|
13 |
import time
|
14 |
warnings.filterwarnings("ignore")
|
15 |
|
|
|
16 |
os.system("git clone https://github.com/xuebinqin/DIS")
|
17 |
os.system("mv DIS/IS-Net/* .")
|
18 |
|
@@ -36,10 +36,10 @@ class GOSNormalize(object):
|
|
36 |
self.std = std
|
37 |
|
38 |
def __call__(self,image):
|
39 |
-
image = normalize(image,self.mean,self.std)
|
40 |
return image
|
41 |
|
42 |
-
transform =
|
43 |
|
44 |
def load_image(im_path, hypar):
|
45 |
im = im_reader(im_path)
|
@@ -59,88 +59,94 @@ def build_model(hypar, device):
|
|
59 |
layer.float()
|
60 |
|
61 |
net.to(device)
|
62 |
-
|
63 |
-
|
64 |
-
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
|
65 |
net.to(device)
|
66 |
-
net.eval()
|
67 |
return net
|
68 |
|
69 |
def predict(net, inputs_val, shapes_val, hypar, device):
|
70 |
net.eval()
|
71 |
|
72 |
-
if
|
73 |
inputs_val = inputs_val.type(torch.FloatTensor)
|
74 |
else:
|
75 |
inputs_val = inputs_val.type(torch.HalfTensor)
|
76 |
|
77 |
-
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
|
78 |
ds_val = net(inputs_val_v)[0]
|
79 |
-
pred_val = ds_val[0][0
|
80 |
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0),
|
81 |
(shapes_val[0][0], shapes_val[0][1]),
|
82 |
mode='bilinear'))
|
83 |
|
84 |
ma = torch.max(pred_val)
|
85 |
mi = torch.min(pred_val)
|
86 |
-
|
|
|
87 |
|
88 |
-
if device == 'cuda':
|
89 |
torch.cuda.empty_cache()
|
90 |
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)
|
91 |
|
92 |
# Parameters
|
93 |
-
hypar = {
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
105 |
net = build_model(hypar, device)
|
106 |
|
107 |
-
def inference(
|
|
|
|
|
|
|
108 |
start_time = time.time()
|
|
|
109 |
|
110 |
-
#
|
111 |
-
if not
|
|
|
|
|
|
|
112 |
return [], logs, logs
|
113 |
|
114 |
processed_pairs = []
|
115 |
-
for
|
116 |
-
image_tensor, orig_size = load_image(
|
117 |
mask = predict(net, image_tensor, orig_size, hypar, device)
|
118 |
|
119 |
pil_mask = Image.fromarray(mask).convert('L')
|
120 |
-
im_rgb = Image.open(
|
121 |
im_rgba = im_rgb.copy()
|
122 |
im_rgba.putalpha(pil_mask)
|
123 |
processed_pairs.append([im_rgba, pil_mask])
|
124 |
-
|
125 |
end_time = time.time()
|
126 |
elapsed = round(end_time - start_time, 2)
|
127 |
|
128 |
-
# Flatten
|
129 |
final_images = []
|
130 |
for pair in processed_pairs:
|
131 |
final_images.extend(pair)
|
132 |
|
133 |
-
|
134 |
-
logs = logs or ""
|
135 |
-
logs += f"Processed {len(processed_pairs)} image(s) in {elapsed} seconds.\n"
|
136 |
|
|
|
137 |
return final_images, logs, logs
|
138 |
|
139 |
title = "Highly Accurate Dichotomous Image Segmentation"
|
140 |
description = (
|
141 |
-
"This is an unofficial demo for DIS, a model that can remove the background from
|
142 |
-
"
|
143 |
-
"Read more at the links below.<br>"
|
144 |
"GitHub: https://github.com/xuebinqin/DIS<br>"
|
145 |
"Telegram bot: https://t.me/restoration_photo_bot<br>"
|
146 |
"[](https://twitter.com/DoEvent)"
|
@@ -152,22 +158,24 @@ article = (
|
|
152 |
|
153 |
interface = gr.Interface(
|
154 |
fn=inference,
|
155 |
-
inputs=[
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
gr.State()],
|
162 |
outputs=[
|
163 |
gr.Gallery(label="Output (rgba + mask)"),
|
164 |
gr.State(),
|
165 |
gr.Textbox(label="Logs", lines=6)
|
166 |
],
|
167 |
-
examples=[
|
|
|
|
|
|
|
168 |
title=title,
|
169 |
description=description,
|
170 |
article=article,
|
171 |
flagging_mode="never",
|
172 |
-
cache_mode="lazy"
|
173 |
).queue().launch(show_api=True, show_error=True)
|
|
|
|
|
1 |
import cv2
|
2 |
import gradio as gr
|
3 |
import os
|
|
|
12 |
import time
|
13 |
warnings.filterwarnings("ignore")
|
14 |
|
15 |
+
# Clone the DIS repo and move contents (make sure this only happens once per session)
|
16 |
os.system("git clone https://github.com/xuebinqin/DIS")
|
17 |
os.system("mv DIS/IS-Net/* .")
|
18 |
|
|
|
36 |
self.std = std
|
37 |
|
38 |
def __call__(self,image):
|
39 |
+
image = normalize(image, self.mean, self.std)
|
40 |
return image
|
41 |
|
42 |
+
transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])])
|
43 |
|
44 |
def load_image(im_path, hypar):
|
45 |
im = im_reader(im_path)
|
|
|
59 |
layer.float()
|
60 |
|
61 |
net.to(device)
|
62 |
+
if hypar["restore_model"] != "":
|
63 |
+
net.load_state_dict(torch.load(os.path.join(hypar["model_path"], hypar["restore_model"]), map_location=device))
|
|
|
64 |
net.to(device)
|
65 |
+
net.eval()
|
66 |
return net
|
67 |
|
68 |
def predict(net, inputs_val, shapes_val, hypar, device):
|
69 |
net.eval()
|
70 |
|
71 |
+
if hypar["model_digit"] == "full":
|
72 |
inputs_val = inputs_val.type(torch.FloatTensor)
|
73 |
else:
|
74 |
inputs_val = inputs_val.type(torch.HalfTensor)
|
75 |
|
76 |
+
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
|
77 |
ds_val = net(inputs_val_v)[0]
|
78 |
+
pred_val = ds_val[0][0, :, :, :]
|
79 |
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0),
|
80 |
(shapes_val[0][0], shapes_val[0][1]),
|
81 |
mode='bilinear'))
|
82 |
|
83 |
ma = torch.max(pred_val)
|
84 |
mi = torch.min(pred_val)
|
85 |
+
# normalize to [0, 1], add a small epsilon to avoid division by zero
|
86 |
+
pred_val = (pred_val - mi) / (ma - mi + 1e-8)
|
87 |
|
88 |
+
if device == 'cuda':
|
89 |
torch.cuda.empty_cache()
|
90 |
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)
|
91 |
|
92 |
# Parameters
|
93 |
+
hypar = {
|
94 |
+
"model_path": "./saved_models",
|
95 |
+
"restore_model": "isnet.pth",
|
96 |
+
"interm_sup": False,
|
97 |
+
"model_digit": "full",
|
98 |
+
"seed": 0,
|
99 |
+
"cache_size": [1024, 1024],
|
100 |
+
"input_size": [1024, 1024],
|
101 |
+
"crop_size": [1024, 1024],
|
102 |
+
"model": ISNetDIS()
|
103 |
+
}
|
104 |
+
|
105 |
+
# Build the model
|
106 |
net = build_model(hypar, device)
|
107 |
|
108 |
+
def inference(img1, img2, img3, logs):
|
109 |
+
"""
|
110 |
+
Process up to 3 images in parallel (each can be None if not provided).
|
111 |
+
"""
|
112 |
start_time = time.time()
|
113 |
+
logs = logs or "" # initialize logs if None
|
114 |
|
115 |
+
# Gather images into a list (filter out None)
|
116 |
+
image_paths = [i for i in [img1, img2, img3] if i is not None]
|
117 |
+
if not image_paths:
|
118 |
+
# No images were uploaded
|
119 |
+
logs += f"No images to process.\n"
|
120 |
return [], logs, logs
|
121 |
|
122 |
processed_pairs = []
|
123 |
+
for path in image_paths:
|
124 |
+
image_tensor, orig_size = load_image(path, hypar)
|
125 |
mask = predict(net, image_tensor, orig_size, hypar, device)
|
126 |
|
127 |
pil_mask = Image.fromarray(mask).convert('L')
|
128 |
+
im_rgb = Image.open(path).convert("RGB")
|
129 |
im_rgba = im_rgb.copy()
|
130 |
im_rgba.putalpha(pil_mask)
|
131 |
processed_pairs.append([im_rgba, pil_mask])
|
132 |
+
|
133 |
end_time = time.time()
|
134 |
elapsed = round(end_time - start_time, 2)
|
135 |
|
136 |
+
# Flatten into final gallery list
|
137 |
final_images = []
|
138 |
for pair in processed_pairs:
|
139 |
final_images.extend(pair)
|
140 |
|
141 |
+
logs += f"Processed {len(processed_pairs)} image(s) in {elapsed} second(s).\n"
|
|
|
|
|
142 |
|
143 |
+
# Return the flattened gallery, state, and logs text
|
144 |
return final_images, logs, logs
|
145 |
|
146 |
title = "Highly Accurate Dichotomous Image Segmentation"
|
147 |
description = (
|
148 |
+
"This is an unofficial demo for DIS, a model that can remove the background from up to 3 images. "
|
149 |
+
"Simply upload 1 to 3 images, or use the example images. "
|
|
|
150 |
"GitHub: https://github.com/xuebinqin/DIS<br>"
|
151 |
"Telegram bot: https://t.me/restoration_photo_bot<br>"
|
152 |
"[](https://twitter.com/DoEvent)"
|
|
|
158 |
|
159 |
interface = gr.Interface(
|
160 |
fn=inference,
|
161 |
+
inputs=[
|
162 |
+
gr.Image(type='filepath', label='Image 1'),
|
163 |
+
gr.Image(type='filepath', label='Image 2'),
|
164 |
+
gr.Image(type='filepath', label='Image 3'),
|
165 |
+
gr.State()
|
166 |
+
],
|
|
|
167 |
outputs=[
|
168 |
gr.Gallery(label="Output (rgba + mask)"),
|
169 |
gr.State(),
|
170 |
gr.Textbox(label="Logs", lines=6)
|
171 |
],
|
172 |
+
examples=[
|
173 |
+
["robot.png", None, None],
|
174 |
+
["robot.png", "ship.png", None],
|
175 |
+
],
|
176 |
title=title,
|
177 |
description=description,
|
178 |
article=article,
|
179 |
flagging_mode="never",
|
180 |
+
cache_mode="lazy"
|
181 |
).queue().launch(show_api=True, show_error=True)
|