quickChat / app.py
peterkchung's picture
Create app.py
4879b2a verified
raw
history blame
2.92 kB
"""
Chat engine.
TODOs:
- Better prompts.
- Output reader / parser.
- Agents for evaluation and task planning / splitting.
* Haystack for orchestration
- Tools for agents
* Haystack for orchestration
-
"""
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def query_submit(user_message, history):
return "", history + [[user_message, None]]
def format_prompt(query, history, lookback):
prompt = "Responses should be no more than 100 words long.\n"
for previous_query, prevous_completion in history[-lookback:]:
prompt += f"<s>[INST] {previous_query} [/INST] {prevous_completion}</s> "
prompt += f"[INST] {query} [/INST]"
return prompt
def query_completion(
query,
history,
lookback = 3,
max_new_tokens = 256,
):
generateKwargs = dict(
max_new_tokens = max_new_tokens,
seed = 1337,
)
formatted_query = format_prompt(query, history, lookback)
stream = client.text_generation(
formatted_query,
**generateKwargs,
stream = True,
details = True,
return_full_text = False
)
history[-1][1] = ""
for response in stream:
history[-1][1] += response.token.text
yield history
"""
Chat UI using Gradio Blocks.
Blocks preferred for lower-level "atomic" layout control and state management.
TODOs:
- State management for dynamic components update.
- Add scratpad readout to right of chat log.
* Placeholder added for now.
- Add functionality to retry button.
* Placeholder added for now.
- Add dropdown for model selection.
- Add textbox for HF model selection.
"""
with gr.Blocks() as chatUI:
with gr.Row():
chatOutput = gr.Chatbot(
bubble_full_width = False,
scale = 2
)
agentWhiteBoard = gr.Markdown(scale = 1)
with gr.Row():
queryInput = gr.Textbox(
placeholder = "Please enter you question or request here...",
show_label = False,
scale = 4
)
submitButton = gr.Button("Submit", scale = 1)
with gr.Row():
retry = gr.Button("Retry (null)")
clear = gr.ClearButton([queryInput, chatOutput])
# gr.State()
queryInput.submit(
fn = query_submit,
inputs = [queryInput, chatOutput],
outputs = [queryInput, chatOutput],
queue = False,
).then(
fn = query_completion,
inputs = [queryInput, chatOutput],
outputs = [chatOutput],
)
submitButton.click(
fn = query_submit,
inputs = [queryInput, chatOutput],
outputs = [queryInput, chatOutput],
queue = False,
).then(
fn = query_completion,
inputs = [queryInput, chatOutput],
outputs = [chatOutput],
)
chatUI.queue()
chatUI.launch(show_api = False)