Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
-
from safetensors import safe_open
|
4 |
import torch
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
model =
|
9 |
-
|
10 |
-
|
11 |
-
model_path = "modelbert2"
|
12 |
-
model = BertForSequenceClassification.from_pretrained(model_path)
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
14 |
-
|
15 |
-
tokenizer = AutoTokenizer.from_pretrained("peterkros/cofogv1-bert/modelbert2/")
|
16 |
|
17 |
# Load the label encoder
|
18 |
-
|
19 |
-
with open('peterkros/cofogv1-bert/label_encoder.pkl', 'rb') as file:
|
20 |
label_encoder = pickle.load(file)
|
21 |
|
22 |
def predict(text):
|
@@ -28,18 +21,17 @@ def predict(text):
|
|
28 |
predicted_label = label_encoder.inverse_transform([predicted_class])[0]
|
29 |
return predicted_label
|
30 |
|
31 |
-
|
32 |
# Define the markdown text with bullet points
|
33 |
markdown_text = """
|
34 |
-
-
|
35 |
-
- Input one budget line per time.
|
36 |
- Accuracy of the model is ~72%.
|
37 |
"""
|
38 |
|
39 |
# Define the interface
|
40 |
iface = gr.Interface(
|
41 |
fn=predict,
|
42 |
-
inputs=gr.inputs.Textbox(lines=
|
43 |
outputs="text",
|
44 |
title="COFOG Level 1 Classification",
|
45 |
description=markdown_text # Add the markdown text to the description
|
@@ -47,4 +39,4 @@ iface = gr.Interface(
|
|
47 |
|
48 |
# Run the interface
|
49 |
if __name__ == "__main__":
|
50 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
3 |
import torch
|
4 |
+
import pickle
|
5 |
|
6 |
+
# Load the model and tokenizer from Hugging Face Hub
|
7 |
+
model_name = "peterkros/cofogv1-bert/modelbert2"
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Load the label encoder
|
12 |
+
with open('label_encoder.pkl', 'rb') as file:
|
|
|
13 |
label_encoder = pickle.load(file)
|
14 |
|
15 |
def predict(text):
|
|
|
21 |
predicted_label = label_encoder.inverse_transform([predicted_class])[0]
|
22 |
return predicted_label
|
23 |
|
|
|
24 |
# Define the markdown text with bullet points
|
25 |
markdown_text = """
|
26 |
+
- Trained with ~1500 rows of data on bert-base-uncased, 110M, English.
|
27 |
+
- Input one budget line per time.
|
28 |
- Accuracy of the model is ~72%.
|
29 |
"""
|
30 |
|
31 |
# Define the interface
|
32 |
iface = gr.Interface(
|
33 |
fn=predict,
|
34 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter Budget line here..."),
|
35 |
outputs="text",
|
36 |
title="COFOG Level 1 Classification",
|
37 |
description=markdown_text # Add the markdown text to the description
|
|
|
39 |
|
40 |
# Run the interface
|
41 |
if __name__ == "__main__":
|
42 |
+
iface.launch()
|