peterkros's picture
Update app.py
f9946df verified
raw
history blame
6.66 kB
import gradio as gr
import openai
import os
import tiktoken
# Set your OpenAI API key
openai.api_key = os.getenv('OPENAI_API_KEY')
# Pricing constants
INPUT_COST_PER_TOKEN = 0.50 / 1_000_000
OUTPUT_COST_PER_TOKEN = 1.50 / 1_000_000
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def add_text(history, text):
history.append((text, "**That's cool!**"))
return history
def add_file(history, file):
# Assuming you want to display the name of the uploaded file
file_info = (f"Uploaded file: {file.name}", "")
history.append(file_info)
return history
def num_tokens_from_messages(messages, model="gpt-3.5-turbo"):
encoding = tiktoken.encoding_for_model(model)
num_tokens = 0
for message in messages:
num_tokens += 4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name": # if there's a name, the role is omitted
num_tokens += 1 # role is always required and always 1 token
num_tokens += 2 # every reply is primed with <im_start>assistant
return num_tokens
def initialize_chat():
# This function initializes the chat with an initial question.
initial_question = "I'm 14 years old female and want to become a graphic designer. I'm living in Uttar Pradesh in India. How can I start?"
chat_history = [(None, initial_question)]
response, follow_up_questions, input_tokens, output_tokens, cost = generate_response(initial_question)
chat_history.append((None, response))
return chat_history, follow_up_questions, input_tokens, output_tokens, cost
def generate_response(selected_question):
prompt = selected_question # Ensure selected_question is a string
messages = [
{"role": "system", "content": "You are a friendly and helpful chatbot."},
{"role": "user", "content": prompt}
]
try:
input_tokens = num_tokens_from_messages(messages, model="gpt-3.5-turbo")
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=150,
temperature=0.7,
)
output_text = response.choices[0].message['content'].strip()
output_tokens = response.usage['completion_tokens']
follow_up_prompt = f"Based on the following response, suggest three follow-up questions: {output_text}"
follow_up_messages = [
{"role": "system", "content": "You are a friendly and helpful chatbot."},
{"role": "user", "content": follow_up_prompt}
]
follow_up_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=follow_up_messages,
max_tokens=100,
temperature=0.7,
)
follow_up_questions = follow_up_response.choices[0].message['content'].strip().split('\n')
topics_str = "Topic analysis not available"
# Calculate the total tokens used
total_input_tokens = input_tokens + num_tokens_from_messages(follow_up_messages, model="gpt-3.5-turbo")
total_output_tokens = output_tokens + follow_up_response.usage['completion_tokens']
# Calculate cost
input_cost = total_input_tokens * INPUT_COST_PER_TOKEN
output_cost = total_output_tokens * OUTPUT_COST_PER_TOKEN
total_cost = input_cost + output_cost
# Adjusted to return the response and follow-up questions
new_response = output_text + "\n\nTopics: " + topics_str
except Exception as e:
new_response = f"Error generating response: {e}"
follow_up_questions = []
total_input_tokens = 0
total_output_tokens = 0
total_cost = 0.0
return new_response, follow_up_questions, total_input_tokens, total_output_tokens, total_cost
def update_suggested_questions(follow_up_questions):
return gr.Markdown.update(value="\n".join(f"* {q}" for q in follow_up_questions))
# CSS for the phone layout and background
css = """
#chat-container {
max-width: 400px;
margin: auto;
border: 1px solid #ccc;
border-radius: 20px;
overflow: hidden;
background: url('https://path-to-your-phone-background-image.png') no-repeat center center;
background-size: cover;
height: 700px;
padding: 20px;
box-sizing: border-box;
}
#chatbot {
height: calc(100% - 50px);
overflow-y: auto;
background: transparent;
}
"""
# Initialize the chat history and suggested questions
chat_history, initial_suggested_questions, initial_input_tokens, initial_output_tokens, initial_cost = initialize_chat()
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"""
# Child safe chatbot project!
In the realm of digital communication, the development of an advanced chatbot that incorporates topic modeling represents a significant leap towards enhancing user interaction and maintaining focus during conversations. This innovative chatbot design is specifically engineered to streamline discussions by guiding users to select from a curated list of suggested questions. This approach is crafted to mitigate the risk of diverging into off-topic dialogues, which are common pitfalls in conventional chatbot systems.
"""
)
suggested_questions = gr.Markdown(
value="### Suggested Questions:\n\n" + "\n".join(f"* {q}" for q in initial_suggested_questions)
)
token_info = gr.Markdown(
value=f"### Token Usage:\n\n* Input Tokens: {initial_input_tokens}\n* Output Tokens: {initial_output_tokens}\n* Total Cost: ${initial_cost:.4f}"
)
with gr.Column(scale=1, elem_id="chat-container"):
chatbot = gr.Chatbot(
value=chat_history,
elem_id="chatbot",
bubble_full_width=False,
label="Safe Chatbot v1",
avatar_images=(None, os.path.join(os.getcwd(), "avatar.png"))
)
with gr.Row():
txt = gr.Textbox(scale=4, show_label=False, placeholder="Select Question", container=False, interactive=False) # Adjust based on need
btn = gr.Button("Submit")
btn.click(fn=generate_response, inputs=[txt], outputs=[chatbot, suggested_questions, token_info])
chatbot.like(print_like_dislike, None, None)
if __name__ == "__main__":
demo.launch(share=True)