Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,12 +9,6 @@ from sentence_transformers import SentenceTransformer
|
|
9 |
# Retrieve the token from environment variables
|
10 |
huggingface_token = os.getenv('LLAMA_ACCES_TOKEN')
|
11 |
|
12 |
-
import gradio as gr
|
13 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
14 |
-
import os
|
15 |
-
from bertopic import BERTopic
|
16 |
-
from sentence_transformers import SentenceTransformer
|
17 |
-
|
18 |
# Assuming necessary initializations and model loading here
|
19 |
# Retrieve the token from environment variables
|
20 |
huggingface_token = os.getenv('LLAMA_ACCES_TOKEN')
|
@@ -45,12 +39,16 @@ def initialize_chat():
|
|
45 |
# This function initializes the chat with a "Hello" message.
|
46 |
return [(None, "Hello, my name is <strong>Andrea</strong>, I'm a <em>Friendly Chatbot</em> and will help you with your learning journey. <br>Select a question from below to start!")]
|
47 |
|
|
|
48 |
|
49 |
def generate_response(selected_question):
|
|
|
50 |
prompt = selected_question # Ensure selected_question is a string
|
51 |
inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
|
52 |
outputs = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=50)
|
53 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
54 |
|
55 |
try:
|
56 |
topics, _ = topic_model.transform([response])
|
@@ -61,7 +59,11 @@ def generate_response(selected_question):
|
|
61 |
print(f"Error during topic analysis: {e}")
|
62 |
|
63 |
# Adjusted to return a list of tuples as expected by the Chatbot component
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
|
66 |
with gr.Blocks() as demo:
|
67 |
chatbot = gr.Chatbot(
|
|
|
9 |
# Retrieve the token from environment variables
|
10 |
huggingface_token = os.getenv('LLAMA_ACCES_TOKEN')
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# Assuming necessary initializations and model loading here
|
13 |
# Retrieve the token from environment variables
|
14 |
huggingface_token = os.getenv('LLAMA_ACCES_TOKEN')
|
|
|
39 |
# This function initializes the chat with a "Hello" message.
|
40 |
return [(None, "Hello, my name is <strong>Andrea</strong>, I'm a <em>Friendly Chatbot</em> and will help you with your learning journey. <br>Select a question from below to start!")]
|
41 |
|
42 |
+
chat_history = initialize_chat()
|
43 |
|
44 |
def generate_response(selected_question):
|
45 |
+
global chat_history
|
46 |
prompt = selected_question # Ensure selected_question is a string
|
47 |
inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
|
48 |
outputs = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=50)
|
49 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
+
|
51 |
+
|
52 |
|
53 |
try:
|
54 |
topics, _ = topic_model.transform([response])
|
|
|
59 |
print(f"Error during topic analysis: {e}")
|
60 |
|
61 |
# Adjusted to return a list of tuples as expected by the Chatbot component
|
62 |
+
new_response = (prompt, response + "\n\nTopics: " + topics_str)
|
63 |
+
chat_history.append(new_response)
|
64 |
+
|
65 |
+
|
66 |
+
return chat_history
|
67 |
|
68 |
with gr.Blocks() as demo:
|
69 |
chatbot = gr.Chatbot(
|