Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,13 +14,17 @@ huggingface_token = os.getenv('LLAMA_ACCES_TOKEN')
|
|
14 |
huggingface_token = os.getenv('LLAMA_ACCES_TOKEN')
|
15 |
|
16 |
# Use the token with from_pretrained
|
17 |
-
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf", token=huggingface_token)
|
18 |
-
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", token=huggingface_token)
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Assuming BERTopic and other necessary components are initialized here
|
21 |
# Initialize your BERTopic model
|
22 |
-
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
|
23 |
-
topic_model = BERTopic(embedding_model=sentence_model)
|
24 |
|
25 |
def print_like_dislike(x: gr.LikeData):
|
26 |
print(x.index, x.value, x.liked)
|
@@ -50,13 +54,13 @@ def generate_response(selected_question):
|
|
50 |
|
51 |
|
52 |
|
53 |
-
try:
|
54 |
-
topics, _ = topic_model.transform([response])
|
55 |
-
topic_names = [", ".join([word for word, _ in topic_model.get_topic(topic)[:5]]) for topic in topics if topic != -1]
|
56 |
-
topics_str = "; ".join(topic_names[:10])
|
57 |
-
except Exception as e:
|
58 |
-
|
59 |
-
print(f"Error during topic analysis: {e}")
|
60 |
|
61 |
# Adjusted to return a list of tuples as expected by the Chatbot component
|
62 |
new_response = (prompt, response + "\n\nTopics: " + topics_str)
|
@@ -87,5 +91,7 @@ with gr.Blocks() as demo:
|
|
87 |
]
|
88 |
gr.Examples(examples, inputs=[txt], outputs=[chatbot], label="Select Question")
|
89 |
|
|
|
|
|
90 |
if __name__ == "__main__":
|
91 |
demo.launch()
|
|
|
14 |
huggingface_token = os.getenv('LLAMA_ACCES_TOKEN')
|
15 |
|
16 |
# Use the token with from_pretrained
|
17 |
+
#tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf", token=huggingface_token)
|
18 |
+
#model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", token=huggingface_token)
|
19 |
+
|
20 |
+
# Load the tokenizer and model
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
|
22 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
|
23 |
|
24 |
# Assuming BERTopic and other necessary components are initialized here
|
25 |
# Initialize your BERTopic model
|
26 |
+
#sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
|
27 |
+
#topic_model = BERTopic(embedding_model=sentence_model)
|
28 |
|
29 |
def print_like_dislike(x: gr.LikeData):
|
30 |
print(x.index, x.value, x.liked)
|
|
|
54 |
|
55 |
|
56 |
|
57 |
+
#try:
|
58 |
+
#topics, _ = topic_model.transform([response])
|
59 |
+
#topic_names = [", ".join([word for word, _ in topic_model.get_topic(topic)[:5]]) for topic in topics if topic != -1]
|
60 |
+
#topics_str = "; ".join(topic_names[:10])
|
61 |
+
#except Exception as e:
|
62 |
+
topics_str = "Topic analysis not available"
|
63 |
+
#print(f"Error during topic analysis: {e}")
|
64 |
|
65 |
# Adjusted to return a list of tuples as expected by the Chatbot component
|
66 |
new_response = (prompt, response + "\n\nTopics: " + topics_str)
|
|
|
91 |
]
|
92 |
gr.Examples(examples, inputs=[txt], outputs=[chatbot], label="Select Question")
|
93 |
|
94 |
+
chatbot.like(print_like_dislike, None, None)
|
95 |
+
|
96 |
if __name__ == "__main__":
|
97 |
demo.launch()
|