Spaces:
Sleeping
Sleeping
Create mobilenetv2.py
Browse files
src/models/backbones/mobilenetv2.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" This file is adapted from https://github.com/thuyngch/Human-Segmentation-PyTorch"""
|
| 2 |
+
|
| 3 |
+
import math
|
| 4 |
+
import json
|
| 5 |
+
from functools import reduce
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from torch import nn
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
#------------------------------------------------------------------------------
|
| 12 |
+
# Useful functions
|
| 13 |
+
#------------------------------------------------------------------------------
|
| 14 |
+
|
| 15 |
+
def _make_divisible(v, divisor, min_value=None):
|
| 16 |
+
if min_value is None:
|
| 17 |
+
min_value = divisor
|
| 18 |
+
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
| 19 |
+
# Make sure that round down does not go down by more than 10%.
|
| 20 |
+
if new_v < 0.9 * v:
|
| 21 |
+
new_v += divisor
|
| 22 |
+
return new_v
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def conv_bn(inp, oup, stride):
|
| 26 |
+
return nn.Sequential(
|
| 27 |
+
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
|
| 28 |
+
nn.BatchNorm2d(oup),
|
| 29 |
+
nn.ReLU6(inplace=True)
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def conv_1x1_bn(inp, oup):
|
| 34 |
+
return nn.Sequential(
|
| 35 |
+
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
|
| 36 |
+
nn.BatchNorm2d(oup),
|
| 37 |
+
nn.ReLU6(inplace=True)
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
#------------------------------------------------------------------------------
|
| 42 |
+
# Class of Inverted Residual block
|
| 43 |
+
#------------------------------------------------------------------------------
|
| 44 |
+
|
| 45 |
+
class InvertedResidual(nn.Module):
|
| 46 |
+
def __init__(self, inp, oup, stride, expansion, dilation=1):
|
| 47 |
+
super(InvertedResidual, self).__init__()
|
| 48 |
+
self.stride = stride
|
| 49 |
+
assert stride in [1, 2]
|
| 50 |
+
|
| 51 |
+
hidden_dim = round(inp * expansion)
|
| 52 |
+
self.use_res_connect = self.stride == 1 and inp == oup
|
| 53 |
+
|
| 54 |
+
if expansion == 1:
|
| 55 |
+
self.conv = nn.Sequential(
|
| 56 |
+
# dw
|
| 57 |
+
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False),
|
| 58 |
+
nn.BatchNorm2d(hidden_dim),
|
| 59 |
+
nn.ReLU6(inplace=True),
|
| 60 |
+
# pw-linear
|
| 61 |
+
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
| 62 |
+
nn.BatchNorm2d(oup),
|
| 63 |
+
)
|
| 64 |
+
else:
|
| 65 |
+
self.conv = nn.Sequential(
|
| 66 |
+
# pw
|
| 67 |
+
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
|
| 68 |
+
nn.BatchNorm2d(hidden_dim),
|
| 69 |
+
nn.ReLU6(inplace=True),
|
| 70 |
+
# dw
|
| 71 |
+
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False),
|
| 72 |
+
nn.BatchNorm2d(hidden_dim),
|
| 73 |
+
nn.ReLU6(inplace=True),
|
| 74 |
+
# pw-linear
|
| 75 |
+
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
| 76 |
+
nn.BatchNorm2d(oup),
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
def forward(self, x):
|
| 80 |
+
if self.use_res_connect:
|
| 81 |
+
return x + self.conv(x)
|
| 82 |
+
else:
|
| 83 |
+
return self.conv(x)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
#------------------------------------------------------------------------------
|
| 87 |
+
# Class of MobileNetV2
|
| 88 |
+
#------------------------------------------------------------------------------
|
| 89 |
+
|
| 90 |
+
class MobileNetV2(nn.Module):
|
| 91 |
+
def __init__(self, in_channels, alpha=1.0, expansion=6, num_classes=1000):
|
| 92 |
+
super(MobileNetV2, self).__init__()
|
| 93 |
+
self.in_channels = in_channels
|
| 94 |
+
self.num_classes = num_classes
|
| 95 |
+
input_channel = 32
|
| 96 |
+
last_channel = 1280
|
| 97 |
+
interverted_residual_setting = [
|
| 98 |
+
# t, c, n, s
|
| 99 |
+
[1 , 16, 1, 1],
|
| 100 |
+
[expansion, 24, 2, 2],
|
| 101 |
+
[expansion, 32, 3, 2],
|
| 102 |
+
[expansion, 64, 4, 2],
|
| 103 |
+
[expansion, 96, 3, 1],
|
| 104 |
+
[expansion, 160, 3, 2],
|
| 105 |
+
[expansion, 320, 1, 1],
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
+
# building first layer
|
| 109 |
+
input_channel = _make_divisible(input_channel*alpha, 8)
|
| 110 |
+
self.last_channel = _make_divisible(last_channel*alpha, 8) if alpha > 1.0 else last_channel
|
| 111 |
+
self.features = [conv_bn(self.in_channels, input_channel, 2)]
|
| 112 |
+
|
| 113 |
+
# building inverted residual blocks
|
| 114 |
+
for t, c, n, s in interverted_residual_setting:
|
| 115 |
+
output_channel = _make_divisible(int(c*alpha), 8)
|
| 116 |
+
for i in range(n):
|
| 117 |
+
if i == 0:
|
| 118 |
+
self.features.append(InvertedResidual(input_channel, output_channel, s, expansion=t))
|
| 119 |
+
else:
|
| 120 |
+
self.features.append(InvertedResidual(input_channel, output_channel, 1, expansion=t))
|
| 121 |
+
input_channel = output_channel
|
| 122 |
+
|
| 123 |
+
# building last several layers
|
| 124 |
+
self.features.append(conv_1x1_bn(input_channel, self.last_channel))
|
| 125 |
+
|
| 126 |
+
# make it nn.Sequential
|
| 127 |
+
self.features = nn.Sequential(*self.features)
|
| 128 |
+
|
| 129 |
+
# building classifier
|
| 130 |
+
if self.num_classes is not None:
|
| 131 |
+
self.classifier = nn.Sequential(
|
| 132 |
+
nn.Dropout(0.2),
|
| 133 |
+
nn.Linear(self.last_channel, num_classes),
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# Initialize weights
|
| 137 |
+
self._init_weights()
|
| 138 |
+
|
| 139 |
+
def forward(self, x):
|
| 140 |
+
# Stage1
|
| 141 |
+
x = self.features[0](x)
|
| 142 |
+
x = self.features[1](x)
|
| 143 |
+
# Stage2
|
| 144 |
+
x = self.features[2](x)
|
| 145 |
+
x = self.features[3](x)
|
| 146 |
+
# Stage3
|
| 147 |
+
x = self.features[4](x)
|
| 148 |
+
x = self.features[5](x)
|
| 149 |
+
x = self.features[6](x)
|
| 150 |
+
# Stage4
|
| 151 |
+
x = self.features[7](x)
|
| 152 |
+
x = self.features[8](x)
|
| 153 |
+
x = self.features[9](x)
|
| 154 |
+
x = self.features[10](x)
|
| 155 |
+
x = self.features[11](x)
|
| 156 |
+
x = self.features[12](x)
|
| 157 |
+
x = self.features[13](x)
|
| 158 |
+
# Stage5
|
| 159 |
+
x = self.features[14](x)
|
| 160 |
+
x = self.features[15](x)
|
| 161 |
+
x = self.features[16](x)
|
| 162 |
+
x = self.features[17](x)
|
| 163 |
+
x = self.features[18](x)
|
| 164 |
+
|
| 165 |
+
# Classification
|
| 166 |
+
if self.num_classes is not None:
|
| 167 |
+
x = x.mean(dim=(2,3))
|
| 168 |
+
x = self.classifier(x)
|
| 169 |
+
|
| 170 |
+
# Output
|
| 171 |
+
return x
|
| 172 |
+
|
| 173 |
+
def _load_pretrained_model(self, pretrained_file):
|
| 174 |
+
pretrain_dict = torch.load(pretrained_file, map_location='cpu')
|
| 175 |
+
model_dict = {}
|
| 176 |
+
state_dict = self.state_dict()
|
| 177 |
+
print("[MobileNetV2] Loading pretrained model...")
|
| 178 |
+
for k, v in pretrain_dict.items():
|
| 179 |
+
if k in state_dict:
|
| 180 |
+
model_dict[k] = v
|
| 181 |
+
else:
|
| 182 |
+
print(k, "is ignored")
|
| 183 |
+
state_dict.update(model_dict)
|
| 184 |
+
self.load_state_dict(state_dict)
|
| 185 |
+
|
| 186 |
+
def _init_weights(self):
|
| 187 |
+
for m in self.modules():
|
| 188 |
+
if isinstance(m, nn.Conv2d):
|
| 189 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 190 |
+
m.weight.data.normal_(0, math.sqrt(2. / n))
|
| 191 |
+
if m.bias is not None:
|
| 192 |
+
m.bias.data.zero_()
|
| 193 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 194 |
+
m.weight.data.fill_(1)
|
| 195 |
+
m.bias.data.zero_()
|
| 196 |
+
elif isinstance(m, nn.Linear):
|
| 197 |
+
n = m.weight.size(1)
|
| 198 |
+
m.weight.data.normal_(0, 0.01)
|
| 199 |
+
m.bias.data.zero_()
|