Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
3 |
import torch
|
4 |
import soundfile as sf
|
5 |
|
@@ -12,13 +12,14 @@ model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
model.to(device)
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
#
|
18 |
-
audio,
|
19 |
-
|
|
|
20 |
# Process the audio to get input features
|
21 |
-
input_features = processor(audio, sampling_rate=
|
22 |
|
23 |
# Generate transcription with attention_mask and correct input_features
|
24 |
attention_mask = torch.ones(input_features.shape, dtype=torch.long, device=device)
|
@@ -35,11 +36,11 @@ def transcribe(audio_path):
|
|
35 |
# Create a Gradio Interface
|
36 |
interface = gr.Interface(
|
37 |
fn=transcribe,
|
38 |
-
inputs=gr.Audio(sources="upload", type="
|
39 |
outputs="text",
|
40 |
title="Whisper Speech-to-Text API",
|
41 |
description="Upload an audio file and get a transcription using OpenAI's Whisper model from Hugging Face."
|
42 |
)
|
43 |
|
44 |
# Launch the interface as an API
|
45 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
3 |
import torch
|
4 |
import soundfile as sf
|
5 |
|
|
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
model.to(device)
|
14 |
|
15 |
+
def transcribe(audio):
|
16 |
+
# Gradio passes audio as a numpy array, so no need to load from file.
|
17 |
+
# If the input is a file path, load the audio from the file:
|
18 |
+
if isinstance(audio, str): # Assuming it's a file path
|
19 |
+
audio, sampling_rate = sf.read(audio)
|
20 |
+
|
21 |
# Process the audio to get input features
|
22 |
+
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features.to(device)
|
23 |
|
24 |
# Generate transcription with attention_mask and correct input_features
|
25 |
attention_mask = torch.ones(input_features.shape, dtype=torch.long, device=device)
|
|
|
36 |
# Create a Gradio Interface
|
37 |
interface = gr.Interface(
|
38 |
fn=transcribe,
|
39 |
+
inputs=gr.Audio(sources="upload", type="numpy"), # Correct handling of audio as numpy array
|
40 |
outputs="text",
|
41 |
title="Whisper Speech-to-Text API",
|
42 |
description="Upload an audio file and get a transcription using OpenAI's Whisper model from Hugging Face."
|
43 |
)
|
44 |
|
45 |
# Launch the interface as an API
|
46 |
+
interface.launch()
|