Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile
|
2 |
+
import whisper
|
3 |
+
import numpy as np
|
4 |
+
import io
|
5 |
+
import wave
|
6 |
+
|
7 |
+
app = FastAPI()
|
8 |
+
|
9 |
+
# Load Whisper model
|
10 |
+
model = whisper.load_model("base") # Change to the model you want to use
|
11 |
+
|
12 |
+
@app.post("/transcribe/")
|
13 |
+
async def transcribe(file: UploadFile = File(...)):
|
14 |
+
audio_data = await file.read()
|
15 |
+
|
16 |
+
# Convert the uploaded file to numpy array
|
17 |
+
with wave.open(io.BytesIO(audio_data), "rb") as wav_reader:
|
18 |
+
samples = wav_reader.getnframes()
|
19 |
+
audio = wav_reader.readframes(samples)
|
20 |
+
audio_as_np_int16 = np.frombuffer(audio, dtype=np.int16)
|
21 |
+
audio_as_np_float32 = audio_as_np_int16.astype(np.float32) / np.iinfo(np.int16).max
|
22 |
+
|
23 |
+
# Transcribe the audio using the Whisper model
|
24 |
+
result = model.transcribe(audio_as_np_float32)
|
25 |
+
text = result['text'].strip()
|
26 |
+
|
27 |
+
return {"transcription": text}
|