from fastapi import FastAPI, File, UploadFile import whisper import numpy as np import io import wave app = FastAPI() # Load Whisper model model = whisper.load_model("base") # Change to the model you want to use @app.post("/transcribe/") async def transcribe(file: UploadFile = File(...)): audio_data = await file.read() # Convert the uploaded file to numpy array with wave.open(io.BytesIO(audio_data), "rb") as wav_reader: samples = wav_reader.getnframes() audio = wav_reader.readframes(samples) audio_as_np_int16 = np.frombuffer(audio, dtype=np.int16) audio_as_np_float32 = audio_as_np_int16.astype(np.float32) / np.iinfo(np.int16).max # Transcribe the audio using the Whisper model result = model.transcribe(audio_as_np_float32) text = result['text'].strip() return {"transcription": text}