|
from transformers import AutoTokenizer, AutoConfig, AutoModelForSequenceClassification |
|
from scipy.special import softmax |
|
import emoji |
|
|
|
def preprocess(text): |
|
new_text = [] |
|
for t in text.split(" "): |
|
|
|
if emoji.is_emoji(t): |
|
|
|
new_text.append(t) |
|
else: |
|
|
|
if t.startswith('@') and len(t) > 1: |
|
|
|
t = '@user' |
|
|
|
if t.startswith('http'): |
|
|
|
t = 'http' |
|
|
|
new_text.append(t) |
|
return " ".join(new_text) |
|
|
|
|
|
def sentiment_analysis(text, tokenizer, model): |
|
text = preprocess(text) |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
scores_ = output[0][0].detach().numpy() |
|
scores_ = softmax(scores_) |
|
labels = ['Negative', 'Positive'] |
|
scores = {l: float(s) for (l, s) in zip(labels, scores_)} |
|
return scores |
|
|
|
|
|
def map_sentiment_score_to_rating(score): |
|
min_score = 0.0 |
|
max_score = 1.0 |
|
min_rating = 1 |
|
max_rating = 10 |
|
rating = ((score - min_score) / (max_score - min_score)) * (max_rating - min_rating) + min_rating |
|
return rating |