petermutwiri commited on
Commit
64c643e
·
1 Parent(s): b47e1a9

Upload main.py

Browse files
Files changed (1) hide show
  1. main.py +205 -0
main.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from fastapi import FastAPI,Form, Body,Path
2
+ # from typing import Annotated
3
+ # from pydantic import BaseModel, Field
4
+ # import joblib
5
+ # import pandas as pd
6
+ # import numpy as np
7
+ # import uvicorn
8
+ # from fastapi.responses import JSONResponse
9
+
10
+
11
+ # app = FastAPI()
12
+
13
+ # # Load the numerical imputer, scaler, and model
14
+ # num_imputer_filepath = "joblib_files/numerical_imputer.joblib"
15
+ # scaler_filepath = "joblib_files/scaler.joblib"
16
+ # model_filepath = "joblib_files/lr_model.joblib"
17
+
18
+ # num_imputer = joblib.load(num_imputer_filepath)
19
+ # scaler = joblib.load(scaler_filepath)
20
+ # model = joblib.load(model_filepath)
21
+
22
+ # class PatientData(BaseModel):
23
+ # PRG: float
24
+ # PL: float
25
+ # PR: float
26
+ # SK: float
27
+ # TS: float
28
+ # M11: float
29
+ # BD2: float
30
+ # Age: float
31
+ # Insurance: int
32
+
33
+ # def preprocess_input_data(user_input):
34
+ # input_data_df = pd.DataFrame([user_input])
35
+ # num_columns = [col for col in input_data_df.columns if input_data_df[col].dtype != 'object']
36
+ # input_data_imputed_num = num_imputer.transform(input_data_df[num_columns])
37
+ # input_scaled_df = pd.DataFrame(scaler.transform(input_data_imputed_num), columns=num_columns)
38
+ # return input_scaled_df
39
+
40
+ # @app.get("/")
41
+ # def read_root():
42
+ # return "Sepsis Prediction App"
43
+ # @app.post("/sepsis/predict")
44
+ # def get_data_from_user(data:PatientData):
45
+ # user_input = data.dict()
46
+ # input_scaled_df = preprocess_input_data(user_input)
47
+ # probabilities = model.predict_proba(input_scaled_df)[0]
48
+ # prediction = np.argmax(probabilities)
49
+
50
+ # sepsis_status = "Positive" if prediction == 1 else "Negative"
51
+ # probability = probabilities[1] if prediction == 1 else probabilities[0]
52
+
53
+ # if prediction == 1:
54
+ # sepsis_explanation = "A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention."
55
+ # else:
56
+ # sepsis_explanation = "A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms."
57
+
58
+ # statement = f"The patient's sepsis status is {sepsis_status} with a probability of {probability:.2f}. {sepsis_explanation}"
59
+
60
+ # user_input_statement = "user-inputted data: "
61
+ # output_df = pd.DataFrame([user_input])
62
+
63
+ # result = {'predicted_sepsis': sepsis_status, 'statement': statement, 'user_input_statement': user_input_statement, 'input_data_df': output_df.to_dict('records')}
64
+ # return result
65
+
66
+ # from fastapi import FastAPI, Form
67
+ # from pydantic import BaseModel
68
+ # import joblib
69
+ # import pandas as pd
70
+ # import numpy as np
71
+ # import uvicorn
72
+ # from fastapi.responses import JSONResponse
73
+
74
+ # app = FastAPI()
75
+
76
+ # # Load the entire pipeline
77
+ # pipeline_filepath = "pipeline.joblib"
78
+ # pipeline = joblib.load(pipeline_filepath)
79
+
80
+ # class PatientData(BaseModel):
81
+ # PRG: float
82
+ # PL: float
83
+ # PR: float
84
+ # SK: float
85
+ # TS: float
86
+ # M11: float
87
+ # BD2: float
88
+ # Age: float
89
+ # Insurance: int
90
+
91
+ # @app.get("/")
92
+ # def read_root():
93
+ # explanation = {
94
+ # 'message': "Welcome to the Sepsis Prediction App",
95
+ # 'description': "This API allows you to predict sepsis based on patient data.",
96
+ # 'usage': "Submit a POST request to /predict with patient data to make predictions.",
97
+ # 'input_fields': {
98
+ # 'PRG': 'Plasma_glucose',
99
+ # 'PL': 'Blood_Work_Result_1',
100
+ # 'PR': 'Blood_Pressure',
101
+ # 'SK': 'Blood_Work_Result_2',
102
+ # 'TS': 'Blood_Work_Result_3',
103
+ # 'M11': 'Body_mass_index',
104
+ # 'BD2': 'Blood_Work_Result_4',
105
+ # 'Insurance': 'Sepsis (Positive = 1, Negative = 0)'
106
+ # }
107
+ # }
108
+ # return explanation
109
+
110
+
111
+ # @app.post("/predict")
112
+ # def get_data_from_user(data: PatientData):
113
+ # user_input = data.model_dump()
114
+
115
+
116
+ # input_df = pd.DataFrame([user_input])
117
+ # # Make predictions using the loaded pipeline
118
+ # # Make predictions using the loaded pipeline
119
+ # predictions = pipeline.predict(user_input)
120
+ # probabilities = pipeline.decision_function(user_input)
121
+
122
+ # # Assuming the pipeline uses a Logistic Regression model
123
+ # probability_of_positive_class = probabilities[0]
124
+
125
+ # # Calculate the prediction
126
+ # prediction = 1 if probability_of_positive_class >= 0.5 else 0
127
+
128
+ # sepsis_status = "Positive" if prediction == 1 else "Negative"
129
+ # sepsis_explanation = "A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention." if prediction == 1 else "A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms."
130
+
131
+
132
+ # if prediction == 1:
133
+ # sepsis_status = "Positive"
134
+ # sepsis_explanation = "A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention."
135
+ # else:
136
+ # sepsis_status = "Negative"
137
+ # sepsis_explanation = "A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms."
138
+
139
+ # result = {
140
+ # 'predicted_sepsis': sepsis_status,
141
+ # 'sepsis_explanation': sepsis_explanation
142
+ # }
143
+ # return result
144
+
145
+ from fastapi import FastAPI
146
+ from pydantic import BaseModel
147
+ import joblib
148
+ import pandas as pd
149
+ import numpy as np
150
+ from sklearn.preprocessing import StandardScaler
151
+ from sklearn.impute import SimpleImputer
152
+ from sklearn.compose import ColumnTransformer
153
+ from sklearn.pipeline import Pipeline
154
+ from sklearn.linear_model import LogisticRegression
155
+
156
+ app = FastAPI()
157
+
158
+ # Load the entire pipeline
159
+ pipeline_filepath = "pipeline.joblib"
160
+ pipeline = joblib.load(pipeline_filepath)
161
+
162
+ class PatientData(BaseModel):
163
+ Plasma_glucose : float
164
+ Blood_Work_Result_1: float
165
+ Blood_Pressure : float
166
+ Blood_Work_Result_2 : float
167
+ Blood_Work_Result_3 : float
168
+ Body_mass_index : float
169
+ Blood_Work_Result_4: float
170
+ Age: float
171
+ Insurance: int
172
+
173
+ @app.get("/")
174
+ def read_root():
175
+ explanation = {
176
+ 'message': "Welcome to the Sepsis Prediction App",
177
+ 'description': "This API allows you to predict sepsis based on patient data.",
178
+ 'usage': "Submit a POST request to /predict with patient data to make predictions.",
179
+
180
+ }
181
+ return explanation
182
+
183
+ @app.post("/predict")
184
+ def get_data_from_user(data: PatientData):
185
+ user_input = data.dict()
186
+
187
+ input_df = pd.DataFrame([user_input])
188
+
189
+ # Make predictions using the loaded pipeline
190
+ prediction = pipeline.predict(input_df)
191
+ probabilities = pipeline.predict_proba(input_df)
192
+
193
+
194
+ probability_of_positive_class = probabilities[0][1]
195
+
196
+ # Calculate the prediction
197
+ sepsis_status = "Positive" if prediction[0] == 1 else "Negative"
198
+ sepsis_explanation = "A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention." if prediction[0] == 1 else "A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms."
199
+
200
+ result = {
201
+ 'predicted_sepsis': sepsis_status,
202
+ 'probability': probability_of_positive_class,
203
+ 'sepsis_explanation': sepsis_explanation
204
+ }
205
+ return result