Spaces:
Runtime error
Runtime error
Commit
·
64c643e
1
Parent(s):
b47e1a9
Upload main.py
Browse files
main.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from fastapi import FastAPI,Form, Body,Path
|
2 |
+
# from typing import Annotated
|
3 |
+
# from pydantic import BaseModel, Field
|
4 |
+
# import joblib
|
5 |
+
# import pandas as pd
|
6 |
+
# import numpy as np
|
7 |
+
# import uvicorn
|
8 |
+
# from fastapi.responses import JSONResponse
|
9 |
+
|
10 |
+
|
11 |
+
# app = FastAPI()
|
12 |
+
|
13 |
+
# # Load the numerical imputer, scaler, and model
|
14 |
+
# num_imputer_filepath = "joblib_files/numerical_imputer.joblib"
|
15 |
+
# scaler_filepath = "joblib_files/scaler.joblib"
|
16 |
+
# model_filepath = "joblib_files/lr_model.joblib"
|
17 |
+
|
18 |
+
# num_imputer = joblib.load(num_imputer_filepath)
|
19 |
+
# scaler = joblib.load(scaler_filepath)
|
20 |
+
# model = joblib.load(model_filepath)
|
21 |
+
|
22 |
+
# class PatientData(BaseModel):
|
23 |
+
# PRG: float
|
24 |
+
# PL: float
|
25 |
+
# PR: float
|
26 |
+
# SK: float
|
27 |
+
# TS: float
|
28 |
+
# M11: float
|
29 |
+
# BD2: float
|
30 |
+
# Age: float
|
31 |
+
# Insurance: int
|
32 |
+
|
33 |
+
# def preprocess_input_data(user_input):
|
34 |
+
# input_data_df = pd.DataFrame([user_input])
|
35 |
+
# num_columns = [col for col in input_data_df.columns if input_data_df[col].dtype != 'object']
|
36 |
+
# input_data_imputed_num = num_imputer.transform(input_data_df[num_columns])
|
37 |
+
# input_scaled_df = pd.DataFrame(scaler.transform(input_data_imputed_num), columns=num_columns)
|
38 |
+
# return input_scaled_df
|
39 |
+
|
40 |
+
# @app.get("/")
|
41 |
+
# def read_root():
|
42 |
+
# return "Sepsis Prediction App"
|
43 |
+
# @app.post("/sepsis/predict")
|
44 |
+
# def get_data_from_user(data:PatientData):
|
45 |
+
# user_input = data.dict()
|
46 |
+
# input_scaled_df = preprocess_input_data(user_input)
|
47 |
+
# probabilities = model.predict_proba(input_scaled_df)[0]
|
48 |
+
# prediction = np.argmax(probabilities)
|
49 |
+
|
50 |
+
# sepsis_status = "Positive" if prediction == 1 else "Negative"
|
51 |
+
# probability = probabilities[1] if prediction == 1 else probabilities[0]
|
52 |
+
|
53 |
+
# if prediction == 1:
|
54 |
+
# sepsis_explanation = "A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention."
|
55 |
+
# else:
|
56 |
+
# sepsis_explanation = "A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms."
|
57 |
+
|
58 |
+
# statement = f"The patient's sepsis status is {sepsis_status} with a probability of {probability:.2f}. {sepsis_explanation}"
|
59 |
+
|
60 |
+
# user_input_statement = "user-inputted data: "
|
61 |
+
# output_df = pd.DataFrame([user_input])
|
62 |
+
|
63 |
+
# result = {'predicted_sepsis': sepsis_status, 'statement': statement, 'user_input_statement': user_input_statement, 'input_data_df': output_df.to_dict('records')}
|
64 |
+
# return result
|
65 |
+
|
66 |
+
# from fastapi import FastAPI, Form
|
67 |
+
# from pydantic import BaseModel
|
68 |
+
# import joblib
|
69 |
+
# import pandas as pd
|
70 |
+
# import numpy as np
|
71 |
+
# import uvicorn
|
72 |
+
# from fastapi.responses import JSONResponse
|
73 |
+
|
74 |
+
# app = FastAPI()
|
75 |
+
|
76 |
+
# # Load the entire pipeline
|
77 |
+
# pipeline_filepath = "pipeline.joblib"
|
78 |
+
# pipeline = joblib.load(pipeline_filepath)
|
79 |
+
|
80 |
+
# class PatientData(BaseModel):
|
81 |
+
# PRG: float
|
82 |
+
# PL: float
|
83 |
+
# PR: float
|
84 |
+
# SK: float
|
85 |
+
# TS: float
|
86 |
+
# M11: float
|
87 |
+
# BD2: float
|
88 |
+
# Age: float
|
89 |
+
# Insurance: int
|
90 |
+
|
91 |
+
# @app.get("/")
|
92 |
+
# def read_root():
|
93 |
+
# explanation = {
|
94 |
+
# 'message': "Welcome to the Sepsis Prediction App",
|
95 |
+
# 'description': "This API allows you to predict sepsis based on patient data.",
|
96 |
+
# 'usage': "Submit a POST request to /predict with patient data to make predictions.",
|
97 |
+
# 'input_fields': {
|
98 |
+
# 'PRG': 'Plasma_glucose',
|
99 |
+
# 'PL': 'Blood_Work_Result_1',
|
100 |
+
# 'PR': 'Blood_Pressure',
|
101 |
+
# 'SK': 'Blood_Work_Result_2',
|
102 |
+
# 'TS': 'Blood_Work_Result_3',
|
103 |
+
# 'M11': 'Body_mass_index',
|
104 |
+
# 'BD2': 'Blood_Work_Result_4',
|
105 |
+
# 'Insurance': 'Sepsis (Positive = 1, Negative = 0)'
|
106 |
+
# }
|
107 |
+
# }
|
108 |
+
# return explanation
|
109 |
+
|
110 |
+
|
111 |
+
# @app.post("/predict")
|
112 |
+
# def get_data_from_user(data: PatientData):
|
113 |
+
# user_input = data.model_dump()
|
114 |
+
|
115 |
+
|
116 |
+
# input_df = pd.DataFrame([user_input])
|
117 |
+
# # Make predictions using the loaded pipeline
|
118 |
+
# # Make predictions using the loaded pipeline
|
119 |
+
# predictions = pipeline.predict(user_input)
|
120 |
+
# probabilities = pipeline.decision_function(user_input)
|
121 |
+
|
122 |
+
# # Assuming the pipeline uses a Logistic Regression model
|
123 |
+
# probability_of_positive_class = probabilities[0]
|
124 |
+
|
125 |
+
# # Calculate the prediction
|
126 |
+
# prediction = 1 if probability_of_positive_class >= 0.5 else 0
|
127 |
+
|
128 |
+
# sepsis_status = "Positive" if prediction == 1 else "Negative"
|
129 |
+
# sepsis_explanation = "A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention." if prediction == 1 else "A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms."
|
130 |
+
|
131 |
+
|
132 |
+
# if prediction == 1:
|
133 |
+
# sepsis_status = "Positive"
|
134 |
+
# sepsis_explanation = "A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention."
|
135 |
+
# else:
|
136 |
+
# sepsis_status = "Negative"
|
137 |
+
# sepsis_explanation = "A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms."
|
138 |
+
|
139 |
+
# result = {
|
140 |
+
# 'predicted_sepsis': sepsis_status,
|
141 |
+
# 'sepsis_explanation': sepsis_explanation
|
142 |
+
# }
|
143 |
+
# return result
|
144 |
+
|
145 |
+
from fastapi import FastAPI
|
146 |
+
from pydantic import BaseModel
|
147 |
+
import joblib
|
148 |
+
import pandas as pd
|
149 |
+
import numpy as np
|
150 |
+
from sklearn.preprocessing import StandardScaler
|
151 |
+
from sklearn.impute import SimpleImputer
|
152 |
+
from sklearn.compose import ColumnTransformer
|
153 |
+
from sklearn.pipeline import Pipeline
|
154 |
+
from sklearn.linear_model import LogisticRegression
|
155 |
+
|
156 |
+
app = FastAPI()
|
157 |
+
|
158 |
+
# Load the entire pipeline
|
159 |
+
pipeline_filepath = "pipeline.joblib"
|
160 |
+
pipeline = joblib.load(pipeline_filepath)
|
161 |
+
|
162 |
+
class PatientData(BaseModel):
|
163 |
+
Plasma_glucose : float
|
164 |
+
Blood_Work_Result_1: float
|
165 |
+
Blood_Pressure : float
|
166 |
+
Blood_Work_Result_2 : float
|
167 |
+
Blood_Work_Result_3 : float
|
168 |
+
Body_mass_index : float
|
169 |
+
Blood_Work_Result_4: float
|
170 |
+
Age: float
|
171 |
+
Insurance: int
|
172 |
+
|
173 |
+
@app.get("/")
|
174 |
+
def read_root():
|
175 |
+
explanation = {
|
176 |
+
'message': "Welcome to the Sepsis Prediction App",
|
177 |
+
'description': "This API allows you to predict sepsis based on patient data.",
|
178 |
+
'usage': "Submit a POST request to /predict with patient data to make predictions.",
|
179 |
+
|
180 |
+
}
|
181 |
+
return explanation
|
182 |
+
|
183 |
+
@app.post("/predict")
|
184 |
+
def get_data_from_user(data: PatientData):
|
185 |
+
user_input = data.dict()
|
186 |
+
|
187 |
+
input_df = pd.DataFrame([user_input])
|
188 |
+
|
189 |
+
# Make predictions using the loaded pipeline
|
190 |
+
prediction = pipeline.predict(input_df)
|
191 |
+
probabilities = pipeline.predict_proba(input_df)
|
192 |
+
|
193 |
+
|
194 |
+
probability_of_positive_class = probabilities[0][1]
|
195 |
+
|
196 |
+
# Calculate the prediction
|
197 |
+
sepsis_status = "Positive" if prediction[0] == 1 else "Negative"
|
198 |
+
sepsis_explanation = "A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention." if prediction[0] == 1 else "A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms."
|
199 |
+
|
200 |
+
result = {
|
201 |
+
'predicted_sepsis': sepsis_status,
|
202 |
+
'probability': probability_of_positive_class,
|
203 |
+
'sepsis_explanation': sepsis_explanation
|
204 |
+
}
|
205 |
+
return result
|