Kaito_KID_AI / app.py
peterpeter8585's picture
Update app.py
667340e verified
import os
import torch
from transformers import AutoModelForCausalLM as m, AutoTokenizer as t
mod=m.from_pretrained("peterpeter8585/sungyoonaimodel2")
tok=t.from_pretrained("peterpeter8585/sungyoonaimodel2", trust_remote_code=True)
mod.eval()
import requests
from bs4 import BeautifulSoup
import urllib
import random
import gradio as gr
chatbot = gr.Chatbot(
label="OpenGPT-4o-Chatty",
avatar_images=["user.png", "OpenAI_logo.png"],
show_copy_button=True,
likeable=True,
layout="panel"
)
# List of user agents to choose from for requests
_useragent_list = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
]
def get_useragent():
"""Returns a random user agent from the list."""
return random.choice(_useragent_list)
def extract_text_from_webpage(html_content):
"""Extracts visible text from HTML content using BeautifulSoup."""
soup = BeautifulSoup(html_content, "html.parser")
# Remove unwanted tags
for tag in soup(["script", "style", "header", "footer", "nav"]):
tag.extract()
# Get the remaining visible text
visible_text = soup.get_text(strip=True)
return visible_text
def search(term, num_results=1, lang="ko", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
"""Performs a Google search and returns the results."""
escaped_term = urllib.parse.quote_plus(term)
start = 0
all_results = []
# Fetch results in batches
while start < num_results:
resp = requests.get(
url="https://www.google.com/search",
headers={"User-Agent": get_useragent()}, # Set random user agent
params={
"q": term,
"num": num_results - start, # Number of results to fetch in this batch
"hl": lang,
"start": start,
"safe": safe,
},
timeout=timeout,
verify=ssl_verify,
)
resp.raise_for_status() # Raise an exception if request fails
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
# If no results, continue to the next batch
if not result_block:
start += 1
continue
# Extract link and text from each result
for result in result_block:
link = result.find("a", href=True)
if link:
link = link["href"]
try:
# Fetch webpage content
webpage = requests.get(link, headers={"User-Agent": get_useragent()})
webpage.raise_for_status()
# Extract visible text from webpage
visible_text = extract_text_from_webpage(webpage.text)
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException as e:
# Handle errors fetching or processing webpage
print(f"Error fetching or processing {link}: {e}")
all_results.append({"link": link, "text": None})
else:
all_results.append({"link": None, "text": None})
start += len(result_block) # Update starting index for next batch
return all_results
def chat(message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p):
s=search(term="괴도키드", num_results=5)
messages=[{"role":"system","content":f"You are Kaito KID of the animation conan.this is the information of Kaito KID:{s}"+f"And, your name is also Kaito KID."}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
input_ids=tok.apply_chat_template(messages, add_generation_prompt=True,return_tensors="pt")
with torch.no_grad():
o=mod.generate(input_ids, max_new_tokens=max_tokens,do_sample=True,temperature=temperature,top_p=top_p)[0][input_ids.shape[-1]:]
ans=tok.decode(o, skip_special_tokens=True)
yield ans
ai1=gr.ChatInterface(
chat,
chatbot=chatbot,
additional_inputs=[
gr.Textbox(value="You are Kaito KID", label="System message", interactive=False),
gr.Slider(minimum=1, maximum=2048, value=400, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.1,
step=0.05,
label="Top-p (nucleus sampling)",
)
],
)
with gr.Blocks(theme="prithivMLmods/Minecraft-Theme") as ai:
gr.TabbedInterface([ai1],["Chatchat"])
ai.launch()