Spaces:
Sleeping
Sleeping
import os | |
import torch | |
from transformers import AutoModelForCausalLM as m, AutoTokenizer as t | |
mod=m.from_pretrained("peterpeter8585/sungyoonaimodel2") | |
tok=t.from_pretrained("peterpeter8585/sungyoonaimodel2", trust_remote_code=True) | |
mod.eval() | |
import requests | |
from bs4 import BeautifulSoup | |
import urllib | |
import random | |
import gradio as gr | |
chatbot = gr.Chatbot( | |
label="OpenGPT-4o-Chatty", | |
avatar_images=["user.png", "OpenAI_logo.png"], | |
show_copy_button=True, | |
likeable=True, | |
layout="panel" | |
) | |
# List of user agents to choose from for requests | |
_useragent_list = [ | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0', | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62', | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0' | |
] | |
def get_useragent(): | |
"""Returns a random user agent from the list.""" | |
return random.choice(_useragent_list) | |
def extract_text_from_webpage(html_content): | |
"""Extracts visible text from HTML content using BeautifulSoup.""" | |
soup = BeautifulSoup(html_content, "html.parser") | |
# Remove unwanted tags | |
for tag in soup(["script", "style", "header", "footer", "nav"]): | |
tag.extract() | |
# Get the remaining visible text | |
visible_text = soup.get_text(strip=True) | |
return visible_text | |
def search(term, num_results=1, lang="ko", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None): | |
"""Performs a Google search and returns the results.""" | |
escaped_term = urllib.parse.quote_plus(term) | |
start = 0 | |
all_results = [] | |
# Fetch results in batches | |
while start < num_results: | |
resp = requests.get( | |
url="https://www.google.com/search", | |
headers={"User-Agent": get_useragent()}, # Set random user agent | |
params={ | |
"q": term, | |
"num": num_results - start, # Number of results to fetch in this batch | |
"hl": lang, | |
"start": start, | |
"safe": safe, | |
}, | |
timeout=timeout, | |
verify=ssl_verify, | |
) | |
resp.raise_for_status() # Raise an exception if request fails | |
soup = BeautifulSoup(resp.text, "html.parser") | |
result_block = soup.find_all("div", attrs={"class": "g"}) | |
# If no results, continue to the next batch | |
if not result_block: | |
start += 1 | |
continue | |
# Extract link and text from each result | |
for result in result_block: | |
link = result.find("a", href=True) | |
if link: | |
link = link["href"] | |
try: | |
# Fetch webpage content | |
webpage = requests.get(link, headers={"User-Agent": get_useragent()}) | |
webpage.raise_for_status() | |
# Extract visible text from webpage | |
visible_text = extract_text_from_webpage(webpage.text) | |
all_results.append({"link": link, "text": visible_text}) | |
except requests.exceptions.RequestException as e: | |
# Handle errors fetching or processing webpage | |
print(f"Error fetching or processing {link}: {e}") | |
all_results.append({"link": link, "text": None}) | |
else: | |
all_results.append({"link": None, "text": None}) | |
start += len(result_block) # Update starting index for next batch | |
return all_results | |
def chat(message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p): | |
s=search(term="괴도키드", num_results=5) | |
messages=[{"role":"system","content":f"You are Kaito KID of the animation conan.this is the information of Kaito KID:{s}"+f"And, your name is also Kaito KID."}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
input_ids=tok.apply_chat_template(messages, add_generation_prompt=True,return_tensors="pt") | |
with torch.no_grad(): | |
o=mod.generate(input_ids, max_new_tokens=max_tokens,do_sample=True,temperature=temperature,top_p=top_p)[0][input_ids.shape[-1]:] | |
ans=tok.decode(o, skip_special_tokens=True) | |
yield ans | |
ai1=gr.ChatInterface( | |
chat, | |
chatbot=chatbot, | |
additional_inputs=[ | |
gr.Textbox(value="You are Kaito KID", label="System message", interactive=False), | |
gr.Slider(minimum=1, maximum=2048, value=400, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.1, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
) | |
], | |
) | |
with gr.Blocks(theme="prithivMLmods/Minecraft-Theme") as ai: | |
gr.TabbedInterface([ai1],["Chatchat"]) | |
ai.launch() |