File size: 9,438 Bytes
8e5cc83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction
# Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han
# International Conference on Computer Vision (ICCV), 2023

import os
import sys

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm

from efficientvit.apps.trainer import Trainer
from efficientvit.apps.utils import AverageMeter, is_master, sync_tensor
from efficientvit.clscore.trainer.utils import accuracy, apply_mixup, label_smooth
from efficientvit.models.utils import list_join, list_mean, torch_random_choices

__all__ = ["ClsTrainer"]


class ClsTrainer(Trainer):
    def __init__(

        self,

        path: str,

        model: nn.Module,

        data_provider,

        auto_restart_thresh: float or None = None,

    ) -> None:
        super().__init__(
            path=path,
            model=model,
            data_provider=data_provider,
        )
        self.auto_restart_thresh = auto_restart_thresh
        self.test_criterion = nn.CrossEntropyLoss()

    def _validate(self, model, data_loader, epoch) -> dict[str, any]:
        val_loss = AverageMeter()
        val_top1 = AverageMeter()
        val_top5 = AverageMeter()

        with torch.no_grad():
            with tqdm(
                total=len(data_loader),
                desc=f"Validate Epoch #{epoch + 1}",
                disable=not is_master(),
                file=sys.stdout,
            ) as t:
                for images, labels in data_loader:
                    images, labels = images.cuda(), labels.cuda()
                    # compute output
                    output = model(images)
                    loss = self.test_criterion(output, labels)
                    val_loss.update(loss, images.shape[0])
                    if self.data_provider.n_classes >= 100:
                        acc1, acc5 = accuracy(output, labels, topk=(1, 5))
                        val_top5.update(acc5[0], images.shape[0])
                    else:
                        acc1 = accuracy(output, labels, topk=(1,))[0]
                    val_top1.update(acc1[0], images.shape[0])

                    t.set_postfix(
                        {
                            "loss": val_loss.avg,
                            "top1": val_top1.avg,
                            "top5": val_top5.avg,
                            "#samples": val_top1.get_count(),
                            "bs": images.shape[0],
                            "res": images.shape[2],
                        }
                    )
                    t.update()
        return {
            "val_top1": val_top1.avg,
            "val_loss": val_loss.avg,
            **({"val_top5": val_top5.avg} if val_top5.count > 0 else {}),
        }

    def before_step(self, feed_dict: dict[str, any]) -> dict[str, any]:
        images = feed_dict["data"].cuda()
        labels = feed_dict["label"].cuda()

        # label smooth
        labels = label_smooth(labels, self.data_provider.n_classes, self.run_config.label_smooth)

        # mixup
        if self.run_config.mixup_config is not None:
            # choose active mixup config
            mix_weight_list = [mix_list[2] for mix_list in self.run_config.mixup_config["op"]]
            active_id = torch_random_choices(
                list(range(len(self.run_config.mixup_config["op"]))),
                weight_list=mix_weight_list,
            )
            active_id = int(sync_tensor(active_id, reduce="root"))
            active_mixup_config = self.run_config.mixup_config["op"][active_id]
            mixup_type, mixup_alpha = active_mixup_config[:2]

            lam = float(torch.distributions.beta.Beta(mixup_alpha, mixup_alpha).sample())
            lam = float(np.clip(lam, 0, 1))
            lam = float(sync_tensor(lam, reduce="root"))

            images, labels = apply_mixup(images, labels, lam, mixup_type)

        return {
            "data": images,
            "label": labels,
        }

    def run_step(self, feed_dict: dict[str, any]) -> dict[str, any]:
        images = feed_dict["data"]
        labels = feed_dict["label"]

        # setup mesa
        if self.run_config.mesa is not None and self.run_config.mesa["thresh"] <= self.run_config.progress:
            ema_model = self.ema.shadows
            with torch.inference_mode():
                ema_output = ema_model(images).detach()
            ema_output = torch.clone(ema_output)
            ema_output = F.sigmoid(ema_output).detach()
        else:
            ema_output = None

        with torch.autocast(device_type="cuda", dtype=self.amp_dtype, enabled=self.enable_amp):
            output = self.model(images)
            loss = self.train_criterion(output, labels)
            # mesa loss
            if ema_output is not None:
                mesa_loss = self.train_criterion(output, ema_output)
                loss = loss + self.run_config.mesa["ratio"] * mesa_loss
        self.scaler.scale(loss).backward()

        # calc train top1 acc
        if self.run_config.mixup_config is None:
            top1 = accuracy(output, torch.argmax(labels, dim=1), topk=(1,))[0][0]
        else:
            top1 = None

        return {
            "loss": loss,
            "top1": top1,
        }

    def _train_one_epoch(self, epoch: int) -> dict[str, any]:
        train_loss = AverageMeter()
        train_top1 = AverageMeter()

        with tqdm(
            total=len(self.data_provider.train),
            desc="Train Epoch #{}".format(epoch + 1),
            disable=not is_master(),
            file=sys.stdout,
        ) as t:
            for images, labels in self.data_provider.train:
                feed_dict = {"data": images, "label": labels}

                # preprocessing
                feed_dict = self.before_step(feed_dict)
                # clear gradient
                self.optimizer.zero_grad()
                # forward & backward
                output_dict = self.run_step(feed_dict)
                # update: optimizer, lr_scheduler
                self.after_step()

                # update train metrics
                train_loss.update(output_dict["loss"], images.shape[0])
                if output_dict["top1"] is not None:
                    train_top1.update(output_dict["top1"], images.shape[0])

                # tqdm
                postfix_dict = {
                    "loss": train_loss.avg,
                    "top1": train_top1.avg,
                    "bs": images.shape[0],
                    "res": images.shape[2],
                    "lr": list_join(
                        sorted(set([group["lr"] for group in self.optimizer.param_groups])),
                        "#",
                        "%.1E",
                    ),
                    "progress": self.run_config.progress,
                }
                t.set_postfix(postfix_dict)
                t.update()
        return {
            **({"train_top1": train_top1.avg} if train_top1.count > 0 else {}),
            "train_loss": train_loss.avg,
        }

    def train(self, trials=0, save_freq=1) -> None:
        if self.run_config.bce:
            self.train_criterion = nn.BCEWithLogitsLoss()
        else:
            self.train_criterion = nn.CrossEntropyLoss()

        for epoch in range(self.start_epoch, self.run_config.n_epochs + self.run_config.warmup_epochs):
            train_info_dict = self.train_one_epoch(epoch)
            # eval
            val_info_dict = self.multires_validate(epoch=epoch)
            avg_top1 = list_mean([info_dict["val_top1"] for info_dict in val_info_dict.values()])
            is_best = avg_top1 > self.best_val
            self.best_val = max(avg_top1, self.best_val)

            if self.auto_restart_thresh is not None:
                if self.best_val - avg_top1 > self.auto_restart_thresh:
                    self.write_log(f"Abnormal accuracy drop: {self.best_val} -> {avg_top1}")
                    self.load_model(os.path.join(self.checkpoint_path, "model_best.pt"))
                    return self.train(trials + 1, save_freq)

            # log
            val_log = self.run_config.epoch_format(epoch)
            val_log += f"\tval_top1={avg_top1:.2f}({self.best_val:.2f})"
            val_log += "\tVal("
            for key in list(val_info_dict.values())[0]:
                if key == "val_top1":
                    continue
                val_log += f"{key}={list_mean([info_dict[key] for info_dict in val_info_dict.values()]):.2f},"
            val_log += ")\tTrain("
            for key, val in train_info_dict.items():
                val_log += f"{key}={val:.2E},"
            val_log += (
                f'lr={list_join(sorted(set([group["lr"] for group in self.optimizer.param_groups])), "#", "%.1E")})'
            )
            self.write_log(val_log, prefix="valid", print_log=False)

            # save model
            if (epoch + 1) % save_freq == 0 or (is_best and self.run_config.progress > 0.8):
                self.save_model(
                    only_state_dict=False,
                    epoch=epoch,
                    model_name="model_best.pt" if is_best else "checkpoint.pt",
                )