File size: 6,056 Bytes
8e5cc83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import json

import numpy as np
import torch
import torchvision.transforms as transforms
from pycocotools import mask as mask_utils
from skimage import io
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.distributed import DistributedSampler

from efficientvit.apps.data_provider import DataProvider
from efficientvit.samcore.data_provider.utils import (
    Normalize_and_Pad,
    RandomHFlip,
    ResizeLongestSide,
    SAMDistributedSampler,
)

__all__ = ["SAMDataProvider"]


class OnlineDataset(Dataset):
    def __init__(self, root, train=True, num_masks=64, transform=None):
        self.root = root
        self.train = train
        self.num_masks = num_masks
        self.transform = transform

        self.data = open(f"{self.root}/sa_images_ids.txt", "r").read().splitlines()

        if self.train:
            self.data = self.data[: int(len(self.data) * 0.99)]
        else:
            self.data = self.data[int(len(self.data) * 0.99) :]

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        """

        Note: We provide the simplest data organization here. You can modify the code according to your data organization.

        """

        index = int(self.data[idx])

        image_path = f"{self.root}/images/sa_{index}.jpg"
        image = io.imread(image_path)

        json_path = f"{self.root}/masks/sa_{index}.json"
        annotations = json.load(open(json_path))["annotations"]

        if self.train:
            if len(annotations) > self.num_masks:
                r = np.random.choice(len(annotations), size=self.num_masks, replace=False)
            else:
                repeat, residue = self.num_masks // len(annotations), self.num_masks % len(annotations)
                r = np.random.choice(len(annotations), size=residue, replace=False)
                r = np.concatenate([np.arange(len(annotations)) for _ in range(repeat)] + [r], axis=0)

        else:
            if len(annotations) > self.num_masks:
                r = np.arange(self.num_masks)
            else:
                repeat, residue = self.num_masks // len(annotations), self.num_masks % len(annotations)
                r = np.arange(residue)
                r = np.concatenate([np.arange(len(annotations)) for _ in range(repeat)] + [r], axis=0)

        masks = np.stack([mask_utils.decode(annotations[i]["segmentation"]) for i in r])
        points = np.stack([annotations[i]["point_coords"][0] for i in r])
        bboxs = np.stack([annotations[i]["bbox"] for i in r])

        image = torch.tensor(image, dtype=torch.float32)
        image = torch.transpose(torch.transpose(image, 1, 2), 0, 1)
        masks = torch.tensor(masks, dtype=torch.float32)
        points = torch.tensor(points, dtype=torch.float32)
        bboxs = torch.tensor(bboxs, dtype=torch.float32)

        sample = {
            "image": image,
            "masks": masks,
            "points": points,
            "bboxs": bboxs,
            "shape": torch.tensor(image.shape[-2:]),
        }

        if self.transform:
            sample = self.transform(sample)

        return sample


class SAMDataProvider(DataProvider):
    name = "sam"

    def __init__(

        self,

        root: str,

        sub_epochs_per_epoch: int,

        num_masks: int,

        train_batch_size: int,

        test_batch_size: int,

        valid_size: int or float or None = None,

        n_worker=8,

        image_size: int = 1024,

        num_replicas: int or None = None,

        rank: int or None = None,

        train_ratio: float or None = None,

        drop_last: bool = False,

    ):
        self.root = root
        self.num_masks = num_masks
        self.sub_epochs_per_epoch = sub_epochs_per_epoch

        super().__init__(
            train_batch_size,
            test_batch_size,
            valid_size,
            n_worker,
            image_size,
            num_replicas,
            rank,
            train_ratio,
            drop_last,
        )

    def build_train_transform(self):
        train_transforms = [
            RandomHFlip(),
            ResizeLongestSide(target_length=self.image_size[0]),
            Normalize_and_Pad(target_length=self.image_size[0]),
        ]

        return transforms.Compose(train_transforms)

    def build_valid_transform(self):
        valid_transforms = [
            ResizeLongestSide(target_length=self.image_size[0]),
            Normalize_and_Pad(target_length=self.image_size[0]),
        ]

        return transforms.Compose(valid_transforms)

    def build_datasets(self) -> tuple[any, any, any]:
        train_transform = self.build_train_transform()
        valid_transform = self.build_valid_transform()

        train_dataset = OnlineDataset(root=self.root, train=True, num_masks=self.num_masks, transform=train_transform)

        val_dataset = OnlineDataset(root=self.root, train=False, num_masks=2, transform=valid_transform)

        test_dataset = None

        return train_dataset, val_dataset, test_dataset

    def build_dataloader(self, dataset: any or None, batch_size: int, n_worker: int, drop_last: bool, train: bool):
        if dataset is None:
            return None
        if train:
            sampler = SAMDistributedSampler(dataset, sub_epochs_per_epoch=self.sub_epochs_per_epoch)
            dataloader = DataLoader(dataset, batch_size, sampler=sampler, drop_last=True, num_workers=n_worker)
            return dataloader
        else:
            sampler = DistributedSampler(dataset, shuffle=False)
            dataloader = DataLoader(dataset, batch_size, sampler=sampler, drop_last=False, num_workers=n_worker)
            return dataloader

    def set_epoch_and_sub_epoch(self, epoch: int, sub_epoch: int) -> None:
        if isinstance(self.train.sampler, SAMDistributedSampler):
            self.train.sampler.set_epoch_and_sub_epoch(epoch, sub_epoch)