Spaces:
Runtime error
Runtime error
from typing import Tuple | |
import gradio as gr | |
import numpy as np | |
import supervision as sv | |
import torch | |
import time | |
from PIL import Image | |
from torchvision.transforms import ToTensor | |
# from transformers import SamModel, SamProcessor | |
from efficient_sam.build_efficient_sam import build_efficient_sam_vits | |
from efficientvit.models.efficientvit.sam import EfficientViTSamPredictor | |
from efficientvit.sam_model_zoo import create_sam_model | |
MARKDOWN = """ | |
# EfficientViT-SAM vs EfficientSAM vs SAM | |
Paper source: | |
[EfficientViT-SAM](https://arxiv.org/abs/2402.05008) and [EfficientSAM](https://arxiv.org/abs/2312.00863) and | |
[SAM](https://arxiv.org/abs/2304.02643) | |
\n | |
Github Source Code: [Link](https://github.com/pg56714/Segment-Anything-Arena) | |
\n | |
The SAM model takes one minute to run to completion, which slow down other models. Currently, EfficientViT-SAM and EfficientSAM are displayed first. | |
The source code for all three models is available, but the SAM is commented out. | |
""" | |
BOX_EXAMPLES = [ | |
["https://media.roboflow.com/efficient-sam/corgi.jpg", 801, 510, 1782, 993], | |
] | |
PROMPT_COLOR = sv.Color.from_hex("#D3D3D3") | |
MASK_COLOR = sv.Color.from_hex("#FF0000") | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# SAM_MODEL = SamModel.from_pretrained("facebook/sam-vit-huge").to(DEVICE).eval() | |
# SAM_PROCESSOR = SamProcessor.from_pretrained("facebook/sam-vit-huge") | |
EFFICIENT_SAM_MODEL = build_efficient_sam_vits().to(DEVICE).eval() | |
MASK_ANNOTATOR = sv.MaskAnnotator(color=MASK_COLOR, color_lookup=sv.ColorLookup.INDEX) | |
EFFICIENTVITSAM = EfficientViTSamPredictor( | |
create_sam_model(name="xl1", weight_url="./weights/xl1.pt").to(DEVICE).eval() | |
) | |
def annotate_image_with_box_prompt_result( | |
image: np.ndarray, | |
detections: sv.Detections, | |
x_min: int, | |
y_min: int, | |
x_max: int, | |
y_max: int, | |
) -> np.ndarray: | |
h, w, _ = image.shape | |
bgr_image = image[:, :, ::-1] | |
annotated_bgr_image = MASK_ANNOTATOR.annotate( | |
scene=bgr_image.copy(), detections=detections | |
) | |
annotated_bgr_image = sv.draw_rectangle( | |
scene=annotated_bgr_image, | |
rect=sv.Rect( | |
x=x_min, | |
y=y_min, | |
width=int(x_max - x_min), | |
height=int(y_max - y_min), | |
), | |
color=PROMPT_COLOR, | |
thickness=sv.calculate_optimal_line_thickness(resolution_wh=(w, h)), | |
) | |
return annotated_bgr_image[:, :, ::-1] | |
def efficientvit_sam_box_inference( | |
image: np.ndarray, x_min: int, y_min: int, x_max: int, y_max: int | |
) -> np.ndarray: | |
t1 = time.time() | |
box = np.array([[x_min, y_min, x_max, y_max]]) | |
EFFICIENTVITSAM.set_image(image) | |
mask = EFFICIENTVITSAM.predict(box=box, multimask_output=False) | |
mask = mask[0] | |
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask) | |
result = annotate_image_with_box_prompt_result( | |
image=image, | |
detections=detections, | |
x_max=x_max, | |
x_min=x_min, | |
y_max=y_max, | |
y_min=y_min, | |
) | |
t2 = time.time() | |
print(f"timecost: {t2-t1}") | |
return result | |
def inference_with_box( | |
image: np.ndarray, | |
box: np.ndarray, | |
model: torch.jit.ScriptModule, | |
device: torch.device, | |
) -> np.ndarray: | |
bbox = torch.reshape(torch.tensor(box), [1, 1, 2, 2]) | |
bbox_labels = torch.reshape(torch.tensor([2, 3]), [1, 1, 2]) | |
img_tensor = ToTensor()(image) | |
predicted_logits, predicted_iou = model( | |
img_tensor[None, ...].to(device), | |
bbox.to(device), | |
bbox_labels.to(device), | |
) | |
predicted_logits = predicted_logits.cpu() | |
all_masks = torch.ge(torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5).numpy() | |
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy() | |
max_predicted_iou = -1 | |
selected_mask_using_predicted_iou = None | |
for m in range(all_masks.shape[0]): | |
curr_predicted_iou = predicted_iou[m] | |
if ( | |
curr_predicted_iou > max_predicted_iou | |
or selected_mask_using_predicted_iou is None | |
): | |
max_predicted_iou = curr_predicted_iou | |
selected_mask_using_predicted_iou = all_masks[m] | |
return selected_mask_using_predicted_iou | |
def efficient_sam_box_inference( | |
image: np.ndarray, x_min: int, y_min: int, x_max: int, y_max: int | |
) -> np.ndarray: | |
t1 = time.time() | |
box = np.array([[x_min, y_min], [x_max, y_max]]) | |
mask = inference_with_box(image, box, EFFICIENT_SAM_MODEL, DEVICE) | |
mask = mask[np.newaxis, ...] | |
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask) | |
result = annotate_image_with_box_prompt_result( | |
image=image, | |
detections=detections, | |
x_max=x_max, | |
x_min=x_min, | |
y_max=y_max, | |
y_min=y_min, | |
) | |
t2 = time.time() | |
print(f"timecost: {t2-t1}") | |
return result | |
# def sam_box_inference( | |
# image: np.ndarray, x_min: int, y_min: int, x_max: int, y_max: int | |
# ) -> np.ndarray: | |
# t1 = time.time() | |
# input_boxes = [[[x_min, y_min, x_max, y_max]]] | |
# inputs = SAM_PROCESSOR( | |
# Image.fromarray(image), input_boxes=[input_boxes], return_tensors="pt" | |
# ).to(DEVICE) | |
# with torch.no_grad(): | |
# outputs = SAM_MODEL(**inputs) | |
# mask = SAM_PROCESSOR.image_processor.post_process_masks( | |
# outputs.pred_masks.cpu(), | |
# inputs["original_sizes"].cpu(), | |
# inputs["reshaped_input_sizes"].cpu(), | |
# )[0][0][0].numpy() | |
# mask = mask[np.newaxis, ...] | |
# detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask) | |
# result = annotate_image_with_box_prompt_result( | |
# image=image, | |
# detections=detections, | |
# x_max=x_max, | |
# x_min=x_min, | |
# y_max=y_max, | |
# y_min=y_min, | |
# ) | |
# t2 = time.time() | |
# print(f"timecost: {t2-t1}") | |
# return result | |
def box_inference( | |
image: np.ndarray, x_min: int, y_min: int, x_max: int, y_max: int | |
) -> Tuple[np.ndarray, np.ndarray]: | |
return ( | |
efficientvit_sam_box_inference(image, x_min, y_min, x_max, y_max), | |
efficient_sam_box_inference(image, x_min, y_min, x_max, y_max), | |
# sam_box_inference(image, x_min, y_min, x_max, y_max), | |
) | |
# def clear(_: np.ndarray) -> Tuple[None, None, None]: | |
# return None, None, None | |
def clear(_: np.ndarray) -> Tuple[None, None]: | |
return None, None | |
box_input_image = gr.Image() | |
x_min_number = gr.Number(label="x_min") | |
y_min_number = gr.Number(label="y_min") | |
x_max_number = gr.Number(label="x_max") | |
y_max_number = gr.Number(label="y_max") | |
box_inputs = [box_input_image, x_min_number, y_min_number, x_max_number, y_max_number] | |
with gr.Blocks() as demo: | |
gr.Markdown(MARKDOWN) | |
with gr.Row(): | |
box_input_image.render() | |
efficientvit_sam_box_output_image = gr.Image(label="EfficientVit-SAM") | |
efficient_sam_box_output_image = gr.Image(label="EfficientSAM") | |
# sam_box_output_image = gr.Image(label="SAM") | |
with gr.Row(): | |
x_min_number.render() | |
y_min_number.render() | |
x_max_number.render() | |
y_max_number.render() | |
submit_box_inference_button = gr.Button( | |
value="Submit", scale=1, variant="primary" | |
) | |
gr.Examples( | |
# fn=box_inference, | |
examples=BOX_EXAMPLES, | |
inputs=box_inputs, | |
outputs=[ | |
efficientvit_sam_box_output_image, | |
efficient_sam_box_output_image, | |
# sam_box_output_image, | |
], | |
) | |
submit_box_inference_button.click( | |
efficientvit_sam_box_inference, | |
inputs=box_inputs, | |
outputs=efficientvit_sam_box_output_image, | |
) | |
submit_box_inference_button.click( | |
efficient_sam_box_inference, | |
inputs=box_inputs, | |
outputs=efficient_sam_box_output_image, | |
) | |
# submit_box_inference_button.click( | |
# sam_box_inference, inputs=box_inputs, outputs=sam_box_output_image | |
# ) | |
box_input_image.change( | |
clear, | |
inputs=box_input_image, | |
outputs=[ | |
efficientvit_sam_box_output_image, | |
efficient_sam_box_output_image, | |
# sam_box_output_image, | |
], | |
) | |
demo.launch(debug=False, show_error=True) | |