Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import joblib
|
2 |
|
3 |
import gradio as gr
|
@@ -30,6 +31,9 @@ clarity_input = gr.Dropdown(
|
|
30 |
report_input = gr.Dropdown(['GIA', 'IGI', 'HRD', 'AGS'], label="Report")
|
31 |
type_input = gr.Dropdown(['Natural', 'Lab Grown'], label="Type")
|
32 |
|
|
|
|
|
|
|
33 |
model_output = gr.Label(label="Predicted Price")
|
34 |
|
35 |
def predict_price(carat, shape, cut, color, clarity, report, type):
|
@@ -53,7 +57,9 @@ demo = gr.Interface(fn=predict_price,
|
|
53 |
title="Diamond Price Predictor",
|
54 |
description="This API allows you to predict the price of a diamond given its attributes",
|
55 |
allow_flagging="manual",
|
56 |
-
flagging_options=["Incorrect", "Correct"]
|
|
|
|
|
57 |
|
58 |
demo.queue(concurrency_count=8)
|
59 |
demo.launch(share=False)
|
|
|
1 |
+
import os
|
2 |
import joblib
|
3 |
|
4 |
import gradio as gr
|
|
|
31 |
report_input = gr.Dropdown(['GIA', 'IGI', 'HRD', 'AGS'], label="Report")
|
32 |
type_input = gr.Dropdown(['Natural', 'Lab Grown'], label="Type")
|
33 |
|
34 |
+
hf_token = os.environ["HF_TOKEN"]
|
35 |
+
hf_writer = gr.HuggingFaceDatasetSaver(hf_token, "pgurazada1/diamond-price-predictor-logs")
|
36 |
+
|
37 |
model_output = gr.Label(label="Predicted Price")
|
38 |
|
39 |
def predict_price(carat, shape, cut, color, clarity, report, type):
|
|
|
57 |
title="Diamond Price Predictor",
|
58 |
description="This API allows you to predict the price of a diamond given its attributes",
|
59 |
allow_flagging="manual",
|
60 |
+
flagging_options=["Incorrect", "Correct"],
|
61 |
+
flagging_callback=hf_writer
|
62 |
+
)
|
63 |
|
64 |
demo.queue(concurrency_count=8)
|
65 |
demo.launch(share=False)
|