pgurazada1 commited on
Commit
e4f9add
·
verified ·
1 Parent(s): 269de0b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -39,7 +39,7 @@ log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
39
  log_folder = log_file.parent
40
 
41
  scheduler = CommitScheduler(
42
- repo_id="document-qna-chroma-anyscale-docs",
43
  repo_type="dataset",
44
  folder_path=log_folder,
45
  path_in_repo="data",
@@ -65,6 +65,7 @@ Here are some documents that are relevant to the question.
65
  ```
66
  """
67
 
 
68
  def predict(user_input):
69
 
70
  relevant_document_chunks = retriever.invoke(user_input)
@@ -111,7 +112,8 @@ def predict(user_input):
111
 
112
  textbox = gr.Textbox(placeholder="Enter your query here", lines=6)
113
 
114
- interface = gr.Interface(
 
115
  inputs=textbox, fn=predict, outputs="text",
116
  title="AMA on Tesla 10-K statements",
117
  description="This web API presents an interface to ask questions on contents of the Tesla 10-K reports for the period 2019 - 2023.",
@@ -120,11 +122,9 @@ interface = gr.Interface(
120
  ["Summarize the Management Discussion and Analysis section of the 2021 report in 50 words.", ""],
121
  ["What was the company's debt level in 2020?", ""],
122
  ["Identify 5 key risks identified in the 2019 10k report? Respond with bullet point summaries.", ""]
123
- ]
 
124
  )
125
 
126
- with gr.Blocks() as demo:
127
- interface.launch()
128
-
129
- demo.queue(concurrency_count=16)
130
  demo.launch()
 
39
  log_folder = log_file.parent
40
 
41
  scheduler = CommitScheduler(
42
+ repo_id="document-qna-chroma-anyscale-logs",
43
  repo_type="dataset",
44
  folder_path=log_folder,
45
  path_in_repo="data",
 
65
  ```
66
  """
67
 
68
+ # Define the predict function that runs when 'Submit' is clicked or when a API request is made
69
  def predict(user_input):
70
 
71
  relevant_document_chunks = retriever.invoke(user_input)
 
112
 
113
  textbox = gr.Textbox(placeholder="Enter your query here", lines=6)
114
 
115
+ # Create the interface
116
+ demo = gr.Interface(
117
  inputs=textbox, fn=predict, outputs="text",
118
  title="AMA on Tesla 10-K statements",
119
  description="This web API presents an interface to ask questions on contents of the Tesla 10-K reports for the period 2019 - 2023.",
 
122
  ["Summarize the Management Discussion and Analysis section of the 2021 report in 50 words.", ""],
123
  ["What was the company's debt level in 2020?", ""],
124
  ["Identify 5 key risks identified in the 2019 10k report? Respond with bullet point summaries.", ""]
125
+ ],
126
+ concurrency_limit=16
127
  )
128
 
129
+ demo.queue()
 
 
 
130
  demo.launch()