Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import time
|
2 |
import math
|
3 |
|
|
|
4 |
import pandas as pd
|
5 |
import matplotlib.pyplot as plt
|
6 |
import seaborn as sns
|
@@ -14,6 +15,31 @@ from sklearn.metrics import classification_report
|
|
14 |
LOGS_DATASET_URI = 'pgurazada1/machine-failure-mlops-demo-logs'
|
15 |
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def get_data():
|
18 |
"""
|
19 |
Connect to the HuggingFace dataset where the logs are stored.
|
@@ -24,38 +50,19 @@ def get_data():
|
|
24 |
|
25 |
return sample_df
|
26 |
|
27 |
-
def load_training_data():
|
28 |
-
dataset = fetch_openml(data_id=42890, as_frame=True, parser="auto")
|
29 |
-
data_df = dataset.data
|
30 |
|
31 |
-
target = 'Machine failure'
|
32 |
-
numeric_features = [
|
33 |
-
'Air temperature [K]',
|
34 |
-
'Process temperature [K]',
|
35 |
-
'Rotational speed [rpm]',
|
36 |
-
'Torque [Nm]',
|
37 |
-
'Tool wear [min]'
|
38 |
-
]
|
39 |
-
|
40 |
-
categorical_features = ['Type']
|
41 |
-
|
42 |
-
X = data_df[numeric_features + categorical_features]
|
43 |
-
y = data_df[target]
|
44 |
-
|
45 |
-
Xtrain, Xtest, ytrain, ytest = train_test_split(
|
46 |
-
X, y,
|
47 |
-
test_size=0.2,
|
48 |
-
random_state=42
|
49 |
-
)
|
50 |
-
|
51 |
-
return Xtrain, ytrain
|
52 |
-
|
53 |
def check_model_drift():
|
|
|
|
|
|
|
|
|
|
|
54 |
sample_df = get_data()
|
55 |
p_pos_label_training_data = 0.03475
|
56 |
training_data_size = 8000
|
57 |
|
58 |
n_0 = sample_df.prediction.value_counts()[0]
|
|
|
59 |
try:
|
60 |
n_1 = sample_df.prediction.value_counts()[1]
|
61 |
except Exception as e:
|
@@ -67,11 +74,68 @@ def check_model_drift():
|
|
67 |
p_diff = abs(p_pos_label_training_data - p_pos_label_sample_logs)
|
68 |
|
69 |
if p_diff > 2 * math.sqrt(variance):
|
70 |
-
return "Model Drift Detected! Check
|
71 |
else:
|
72 |
return "No Model Drift!"
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
with gr.Blocks() as demo:
|
76 |
gr.Markdown("# Real-time Monitoring Dashboard")
|
77 |
|
@@ -81,4 +145,11 @@ with gr.Blocks() as demo:
|
|
81 |
with gr.Column():
|
82 |
gr.Textbox(check_model_drift, every=5, label="Model Drift Status")
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
demo.queue().launch()
|
|
|
1 |
import time
|
2 |
import math
|
3 |
|
4 |
+
import numpy as np
|
5 |
import pandas as pd
|
6 |
import matplotlib.pyplot as plt
|
7 |
import seaborn as sns
|
|
|
15 |
LOGS_DATASET_URI = 'pgurazada1/machine-failure-mlops-demo-logs'
|
16 |
|
17 |
|
18 |
+
# Load and cache training data
|
19 |
+
|
20 |
+
dataset = fetch_openml(data_id=42890, as_frame=True, parser="auto")
|
21 |
+
data_df = dataset.data
|
22 |
+
|
23 |
+
target = 'Machine failure'
|
24 |
+
numeric_features = [
|
25 |
+
'Air temperature [K]',
|
26 |
+
'Process temperature [K]',
|
27 |
+
'Rotational speed [rpm]',
|
28 |
+
'Torque [Nm]',
|
29 |
+
'Tool wear [min]'
|
30 |
+
]
|
31 |
+
|
32 |
+
categorical_features = ['Type']
|
33 |
+
|
34 |
+
X = data_df[numeric_features + categorical_features]
|
35 |
+
y = data_df[target]
|
36 |
+
|
37 |
+
Xtrain, Xtest, ytrain, ytest = train_test_split(
|
38 |
+
X, y,
|
39 |
+
test_size=0.2,
|
40 |
+
random_state=42
|
41 |
+
)
|
42 |
+
|
43 |
def get_data():
|
44 |
"""
|
45 |
Connect to the HuggingFace dataset where the logs are stored.
|
|
|
50 |
|
51 |
return sample_df
|
52 |
|
|
|
|
|
|
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def check_model_drift():
|
55 |
+
"""
|
56 |
+
Check proportion of machine failure as compared to
|
57 |
+
its proportion in training data. If the deviation is more than
|
58 |
+
2 standard deviations, flag a model drift.
|
59 |
+
"""
|
60 |
sample_df = get_data()
|
61 |
p_pos_label_training_data = 0.03475
|
62 |
training_data_size = 8000
|
63 |
|
64 |
n_0 = sample_df.prediction.value_counts()[0]
|
65 |
+
|
66 |
try:
|
67 |
n_1 = sample_df.prediction.value_counts()[1]
|
68 |
except Exception as e:
|
|
|
74 |
p_diff = abs(p_pos_label_training_data - p_pos_label_sample_logs)
|
75 |
|
76 |
if p_diff > 2 * math.sqrt(variance):
|
77 |
+
return "Model Drift Detected! Check Logs!"
|
78 |
else:
|
79 |
return "No Model Drift!"
|
80 |
|
81 |
+
|
82 |
+
def psi(actual_proportions, expected_proportions):
|
83 |
+
|
84 |
+
psi_values = (actual_proportions - expected_proportions) * \
|
85 |
+
np.log(actual_proportions / expected_proportions)
|
86 |
+
|
87 |
+
return sum(psi_values)
|
88 |
|
89 |
+
|
90 |
+
def check_data_drift():
|
91 |
+
"""
|
92 |
+
Compare training data features and live features. If the deviation is
|
93 |
+
more than 2 standard deviations, flag data drift.
|
94 |
+
Numeric features and catagorical features are dealt with separately.
|
95 |
+
"""
|
96 |
+
sample_df = get_data()
|
97 |
+
data_drift_status = {}
|
98 |
+
|
99 |
+
numeric_features = [
|
100 |
+
'Air temperature [K]',
|
101 |
+
'Process temperature [K]',
|
102 |
+
'Rotational speed [rpm]',
|
103 |
+
'Torque [Nm]',
|
104 |
+
'Tool wear [min]'
|
105 |
+
]
|
106 |
+
|
107 |
+
categorical_features = ['Type']
|
108 |
+
|
109 |
+
# Numeric features
|
110 |
+
|
111 |
+
for feature in numeric_features:
|
112 |
+
mean_feature_training_data = Xtrain[feature].mean()
|
113 |
+
std_feature_training_data = Xtrain[feature].std()
|
114 |
+
|
115 |
+
mean_feature_sample_logs = sample_df[feature].mean()
|
116 |
+
|
117 |
+
mean_diff = abs(mean_feature_training_data - mean_feature_sample_logs)
|
118 |
+
|
119 |
+
if mean_diff > 2 * std_feature_training_data:
|
120 |
+
data_drift_status[feature] = "Data Drift Detected! Check Logs!"
|
121 |
+
else:
|
122 |
+
data_drift_status[feature] = "No Data Drift!"
|
123 |
+
|
124 |
+
# Categorical feature Type
|
125 |
+
|
126 |
+
live_proportions = sample_df['Type'].value_counts(normalize=True).values
|
127 |
+
training_proportions = Xtrain['Type'].value_counts(normalize=True).values
|
128 |
+
|
129 |
+
psi_value = psi(live_proportions, training_proportions)
|
130 |
+
|
131 |
+
if psi_value > 0.1:
|
132 |
+
data_drift_status['Type'] = "Data Drift Detected! Check Logs!"
|
133 |
+
else:
|
134 |
+
data_drift_status['Type'] = "No Data Drift!"
|
135 |
+
|
136 |
+
return data_drift_status
|
137 |
+
|
138 |
+
|
139 |
with gr.Blocks() as demo:
|
140 |
gr.Markdown("# Real-time Monitoring Dashboard")
|
141 |
|
|
|
145 |
with gr.Column():
|
146 |
gr.Textbox(check_model_drift, every=5, label="Model Drift Status")
|
147 |
|
148 |
+
gr.Markdown("Data drift detection (every 5 seconds)")
|
149 |
+
|
150 |
+
with gr.Row():
|
151 |
+
with gr.Column():
|
152 |
+
gr.DataFrame(check_data_drift, every=5, label="Data Drift Status")
|
153 |
+
|
154 |
+
|
155 |
demo.queue().launch()
|