pgurazada1 commited on
Commit
7ff76a7
·
verified ·
1 Parent(s): 5c0fe97

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -3
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import time
 
2
 
3
  import pandas as pd
4
  import matplotlib.pyplot as plt
@@ -53,10 +54,20 @@ def check_model_drift():
53
  sample_df = get_data()
54
  p_pos_label_training_data = 0.03475
55
  training_data_size = 8000
56
- p_pos_label_sample_logs = sample_df.prediction.value_counts()
57
 
58
- return p_pos_label_sample_logs
 
 
 
 
 
 
59
 
 
 
 
 
 
60
 
61
  with gr.Blocks() as demo:
62
  gr.Markdown("# Real-time Monitoring Dashboard")
@@ -65,6 +76,6 @@ with gr.Blocks() as demo:
65
 
66
  with gr.Row():
67
  with gr.Column():
68
- gr.Textbox(f"Data refreshed at {time.ctime()}")
69
 
70
  demo.queue().launch()
 
1
  import time
2
+ import math
3
 
4
  import pandas as pd
5
  import matplotlib.pyplot as plt
 
54
  sample_df = get_data()
55
  p_pos_label_training_data = 0.03475
56
  training_data_size = 8000
 
57
 
58
+ p_0 = sample_df.prediction.value_counts()[0]
59
+ p_1 = sample_df.prediction.value_counts()[1]
60
+
61
+ p_pos_label_sample_logs = p_1/(p_0+p_1)
62
+
63
+ variance = (p_pos_label_training_data * (1-p_pos_label_training_data))/training_data_size
64
+ p_diff = abs(p_pos_label_training_data - p_pos_label_sample_logs)
65
 
66
+ if p_diff > 2 * math.sqrt(variance):
67
+ print("Model Drift Detected!")
68
+ else:
69
+ print("No Model Drift!")
70
+
71
 
72
  with gr.Blocks() as demo:
73
  gr.Markdown("# Real-time Monitoring Dashboard")
 
76
 
77
  with gr.Row():
78
  with gr.Column():
79
+ gr.Textbox(check_model_drift, every=5)
80
 
81
  demo.queue().launch()