Spaces:
Running
Running
[modify] simplify table
Browse files- app/models.py +0 -2
- app/tables.py +38 -0
- app/utils.py +5 -5
- main.py +7 -13
app/models.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
from typing import Optional
|
2 |
-
|
3 |
from pydantic import BaseModel, Field
|
4 |
|
5 |
|
|
|
|
|
|
|
1 |
from pydantic import BaseModel, Field
|
2 |
|
3 |
|
app/tables.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
from app.models import Architecture, Estimate, Metadata, Tokenizer
|
4 |
+
from app.utils import abbreviate_number, human_readable_size
|
5 |
+
|
6 |
+
|
7 |
+
def get_model_info_df(
|
8 |
+
metadata: Metadata, architecture: Architecture, tokenizer: Tokenizer
|
9 |
+
):
|
10 |
+
return pd.DataFrame(
|
11 |
+
[
|
12 |
+
{
|
13 |
+
"Type": metadata.type_,
|
14 |
+
"Name": metadata.name,
|
15 |
+
"Architecture": metadata.architecture,
|
16 |
+
"File Size": human_readable_size(metadata.file_size),
|
17 |
+
"Parameters": abbreviate_number(metadata.parameters),
|
18 |
+
"Bits Per Weight": round(metadata.bits_per_weight, 2),
|
19 |
+
"Maximum Context Length": architecture.maximum_context_length,
|
20 |
+
"Vocabulary Length": architecture.vocabulary_length,
|
21 |
+
"Tokenizer Model": tokenizer.model,
|
22 |
+
"Tokens Size": human_readable_size(tokenizer.tokens_size),
|
23 |
+
}
|
24 |
+
]
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def get_estimate_df(estimate: Estimate):
|
29 |
+
return pd.DataFrame(
|
30 |
+
[
|
31 |
+
{
|
32 |
+
"Context Size": estimate.context_size,
|
33 |
+
"Flash Attention": estimate.flash_attention,
|
34 |
+
"Logical Batch Size": estimate.logical_batch_size,
|
35 |
+
"Physical Batch Size": estimate.physical_batch_size,
|
36 |
+
}
|
37 |
+
]
|
38 |
+
)
|
app/utils.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
def human_readable_size(size_in_bytes: int) -> str:
|
2 |
-
#
|
3 |
for unit in ["B", "KB", "MB", "GB", "TB", "PB"]:
|
4 |
if size_in_bytes < 1024:
|
5 |
-
return f"{size_in_bytes:.2f}{unit}"
|
6 |
size_in_bytes /= 1024
|
7 |
-
return f"{size_in_bytes:.2f}EB"
|
8 |
|
9 |
|
10 |
def abbreviate_number(number: int) -> str:
|
11 |
-
#
|
12 |
for unit, threshold in [("B", 1e9), ("M", 1e6), ("K", 1e3)]:
|
13 |
if number >= threshold:
|
14 |
-
return f"{number/threshold:.2f}{unit}"
|
15 |
return str(number)
|
|
|
1 |
def human_readable_size(size_in_bytes: int) -> str:
|
2 |
+
# Convert file size to a human-readable format
|
3 |
for unit in ["B", "KB", "MB", "GB", "TB", "PB"]:
|
4 |
if size_in_bytes < 1024:
|
5 |
+
return f"{size_in_bytes:.2f} {unit}"
|
6 |
size_in_bytes /= 1024
|
7 |
+
return f"{size_in_bytes:.2f} EB"
|
8 |
|
9 |
|
10 |
def abbreviate_number(number: int) -> str:
|
11 |
+
# Convert large numbers to abbreviated format
|
12 |
for unit, threshold in [("B", 1e9), ("M", 1e6), ("K", 1e3)]:
|
13 |
if number >= threshold:
|
14 |
+
return f"{number/threshold:.2f} {unit}"
|
15 |
return str(number)
|
main.py
CHANGED
@@ -6,6 +6,7 @@ import gradio as gr
|
|
6 |
import pandas as pd
|
7 |
|
8 |
from app.models import GgufParser
|
|
|
9 |
|
10 |
GGUF_PARSER_VERSION = os.getenv("GGUF_PARSER_VERSION", "v0.12.0")
|
11 |
gguf_parser = Path("gguf-parser-linux-amd64")
|
@@ -19,19 +20,14 @@ def process_url(url, context_length):
|
|
19 |
f"./{gguf_parser} --ctx-size={context_length} -url {url} --json"
|
20 |
).read()
|
21 |
parser_result = GgufParser.model_validate_json(res)
|
22 |
-
# data = json.loads(res)
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
architecture_df = pd.DataFrame([parser_result.architecture.model_dump()])
|
27 |
-
|
28 |
-
tokenizer_df = pd.DataFrame([parser_result.tokenizer.model_dump()])
|
29 |
-
|
30 |
-
estimate_df = pd.DataFrame(
|
31 |
-
[parser_result.estimate.model_dump(exclude_none=True)]
|
32 |
)
|
33 |
|
34 |
-
|
|
|
|
|
35 |
except Exception as e:
|
36 |
return e
|
37 |
|
@@ -52,9 +48,7 @@ if __name__ == "__main__":
|
|
52 |
fn=process_url,
|
53 |
inputs=[url_input, context_length],
|
54 |
outputs=[
|
55 |
-
gr.DataFrame(label="
|
56 |
-
gr.DataFrame(label="ARCHITECTURE"),
|
57 |
-
gr.DataFrame(label="TOKENIZER"),
|
58 |
gr.DataFrame(label="ESTIMATE"),
|
59 |
],
|
60 |
)
|
|
|
6 |
import pandas as pd
|
7 |
|
8 |
from app.models import GgufParser
|
9 |
+
from app.tables import get_estimate_df, get_model_info_df
|
10 |
|
11 |
GGUF_PARSER_VERSION = os.getenv("GGUF_PARSER_VERSION", "v0.12.0")
|
12 |
gguf_parser = Path("gguf-parser-linux-amd64")
|
|
|
20 |
f"./{gguf_parser} --ctx-size={context_length} -url {url} --json"
|
21 |
).read()
|
22 |
parser_result = GgufParser.model_validate_json(res)
|
|
|
23 |
|
24 |
+
model_info = get_model_info_df(
|
25 |
+
parser_result.metadata, parser_result.architecture, parser_result.tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
)
|
27 |
|
28 |
+
estimate_df = get_estimate_df(parser_result.estimate)
|
29 |
+
|
30 |
+
return model_info, estimate_df
|
31 |
except Exception as e:
|
32 |
return e
|
33 |
|
|
|
48 |
fn=process_url,
|
49 |
inputs=[url_input, context_length],
|
50 |
outputs=[
|
51 |
+
gr.DataFrame(label="Model Info"),
|
|
|
|
|
52 |
gr.DataFrame(label="ESTIMATE"),
|
53 |
],
|
54 |
)
|