import gradio as gr import os import sys from pathlib import Path import random import string import time from queue import Queue from threading import Thread text_gen=gr.Interface.load("spaces/Omnibus/MagicPrompt-Stable-Diffusion") def get_prompts(prompt_text): return text_gen(prompt_text) proc1=gr.Interface.load("models/dreamlike-art/dreamlike-photoreal-2.0") def restart_script_periodically(): while True: time.sleep(600) # 10 minutes try: os.execl(sys.executable, sys.executable, *sys.argv) except: pass restart_thread = Thread(target=restart_script_periodically, daemon=True) restart_thread.start() queue = Queue() queue_threshold = 800 def add_random_noise(prompt, noise_level=0.07): if noise_level == 0: noise_level = 0.07 # Get the percentage of characters to add as noise percentage_noise = noise_level * 5 # Get the number of characters to add as noise num_noise_chars = int(len(prompt) * (percentage_noise/100)) # Get the indices of the characters to add noise to noise_indices = random.sample(range(len(prompt)), num_noise_chars) # Add noise to the selected characters prompt_list = list(prompt) noise_chars = string.ascii_letters + string.punctuation + ' ' for index in noise_indices: prompt_list[index] = random.choice(noise_chars) return "".join(prompt_list) def send_it1(inputs, noise_level, proc1=proc1): prompt_with_noise = add_random_noise(inputs, noise_level) output1 = proc1(prompt_with_noise) return output1 def send_it2(inputs, noise_level, proc1=proc1): prompt_with_noise = add_random_noise(inputs, noise_level) output2 = proc1(prompt_with_noise) return output2 #def send_it3(inputs, noise_level, proc1=proc1): #prompt_with_noise = add_random_noise(inputs, noise_level) #output3 = proc1(prompt_with_noise) #return output3 #def send_it4(inputs, noise_level, proc1=proc1): #prompt_with_noise = add_random_noise(inputs, noise_level) #output4 = proc1(prompt_with_noise) #return output4 css = ''' #col-container {max-width: 800px; margin-left: auto; margin-right: auto;} a { color: inherit; text-decoration: underline; } ''' with gr.Blocks(css=css) as demo: gr.HTML( """
Noise Level: Controls how much randomness is added to the input before it is sent to the model. Higher noise level produces more diverse outputs, while lower noise level produces similar outputs, created by Phenomenon1981.
❤️ Press the Like Button if you enjoy my space! ❤️.
Unleash your creative side and generate mesmerizing images with just a few clicks! Enter a spark of inspiration in the "Basic Idea" text box and click the "Magic Prompt" button to elevate it to a polished masterpiece. Make any final tweaks in the "Full Prompt" box and hit the "Generate Images" button to watch your vision come to life. Experiment with the "Noise Level" for a diverse range of outputs, from similar to wildly unique. Let the fun begin!