Spaces:
Runtime error
Runtime error
philipp-zettl
commited on
Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Description: Classification models
|
2 |
+
from transformers import AutoModel, AutoTokenizer, BatchEncoding, TrainingArguments, Trainer
|
3 |
+
from functools import partial
|
4 |
+
from huggingface_hub import snapshot_download
|
5 |
+
from huggingface_hub.constants import HF_HUB_CACHE
|
6 |
+
from accelerate import Accelerator
|
7 |
+
from accelerate.utils import find_executable_batch_size as auto_find_batch_size
|
8 |
+
from datasets import load_dataset, Dataset
|
9 |
+
from torch.utils.data import DataLoader
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.optim as optim
|
13 |
+
import numpy as np
|
14 |
+
import json
|
15 |
+
import os
|
16 |
+
from tqdm import tqdm
|
17 |
+
import pandas as pd
|
18 |
+
|
19 |
+
import matplotlib.pyplot as plt
|
20 |
+
from sklearn.metrics import (
|
21 |
+
ConfusionMatrixDisplay,
|
22 |
+
accuracy_score,
|
23 |
+
classification_report,
|
24 |
+
confusion_matrix,
|
25 |
+
f1_score,
|
26 |
+
recall_score
|
27 |
+
)
|
28 |
+
|
29 |
+
BASE_PATH = os.path.dirname(os.path.abspath(__file__))
|
30 |
+
|
31 |
+
|
32 |
+
class MultiHeadClassification(nn.Module):
|
33 |
+
"""
|
34 |
+
MultiHeadClassification
|
35 |
+
|
36 |
+
An easy to use multi-head classification model. It takes a backbone model and a dictionary of head configurations.
|
37 |
+
It can be used to train multiple classification tasks at once using a single backbone model.
|
38 |
+
|
39 |
+
Apart from joint training, it also supports training individual heads separately, providing a simple way to freeze
|
40 |
+
and unfreeze heads.
|
41 |
+
|
42 |
+
Example:
|
43 |
+
>>> from transformers import AutoModel, AutoTokenizer
|
44 |
+
>>> from torch.optim import AdamW
|
45 |
+
>>> import torch
|
46 |
+
>>> import time
|
47 |
+
>>> import torch.nn as nn
|
48 |
+
>>>
|
49 |
+
>>> # Manually load backbone model to create model
|
50 |
+
>>> backbone = AutoModel.from_pretrained('BAAI/bge-m3')
|
51 |
+
>>> model = MultiHeadClassification(backbone, {'binary': 2, 'sentiment': 3, 'something': 4}).to('cuda')
|
52 |
+
>>> print(model)
|
53 |
+
>>> # Load tokenizer for data preprocessing
|
54 |
+
>>> tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-m3')
|
55 |
+
>>> # some training data
|
56 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt", padding=True, truncation=True)
|
57 |
+
>>> optimizer = AdamW(model.parameters(), lr=5e-4)
|
58 |
+
>>> samples = tokenizer(["Hello, my dog is cute", "Hello, my dog is cute", "I like turtles"], return_tensors="pt", padding=True, truncation=True).to('cuda')
|
59 |
+
>>> labels = {'binary': torch.tensor([0, 0, 1]), 'sentiment': torch.tensor([0, 1, 2]), 'something': torch.tensor([0, 1, 2])}
|
60 |
+
>>> model.freeze_backbone()
|
61 |
+
>>> model.train(True)
|
62 |
+
>>> for i in range(10):
|
63 |
+
... optimizer.zero_grad()
|
64 |
+
... outputs = model(samples)
|
65 |
+
... loss = sum([nn.CrossEntropyLoss()(outputs[name].cpu(), labels[name]) for name in model.heads.keys()])
|
66 |
+
... loss.backward()
|
67 |
+
... optimizer.step()
|
68 |
+
... print(loss.item())
|
69 |
+
... #time.sleep(1)
|
70 |
+
... print(model(samples))
|
71 |
+
>>> # Save full model
|
72 |
+
>>> model.save('model.pth')
|
73 |
+
>>> # Save head only
|
74 |
+
>>> model.save_head('binary', 'binary.pth')
|
75 |
+
>>> # Load full model
|
76 |
+
>>> model = MultiHeadClassification(backbone, {}).to('cuda')
|
77 |
+
>>> model.load('model.pth')
|
78 |
+
>>> # Load head only
|
79 |
+
>>> model = MultiHeadClassification(backbone, {}).to('cuda')
|
80 |
+
>>> model.load_head('binary', 'binary.pth')
|
81 |
+
>>> # Adding new head
|
82 |
+
>>> model.add_head('new_head', 3)
|
83 |
+
>>> print(model)
|
84 |
+
>>> # extend dataset with data for new head
|
85 |
+
>>> labels['new_head'] = torch.tensor([0, 1, 2])
|
86 |
+
>>> # Freeze all heads and backbone
|
87 |
+
>>> model.freeze_all()
|
88 |
+
>>> # Only unfreeze new head
|
89 |
+
>>> model.unfreeze_head('new_head')
|
90 |
+
>>> model.train(True)
|
91 |
+
>>> for i in range(10):
|
92 |
+
... optimizer.zero_grad()
|
93 |
+
... outputs = model(samples)
|
94 |
+
... loss = sum([nn.CrossEntropyLoss()(outputs[name].cpu(), labels[name]) for name in model.heads.keys()])
|
95 |
+
... loss.backward()
|
96 |
+
... optimizer.step()
|
97 |
+
... print(loss.item())
|
98 |
+
>>> print(model(samples))
|
99 |
+
|
100 |
+
Args:
|
101 |
+
backbone (transformers.PreTrainedModel): A pretrained transformer model
|
102 |
+
head_config (dict): A dictionary with head configurations. The key is the head name and the value is the number
|
103 |
+
of classes for that head.
|
104 |
+
"""
|
105 |
+
def __init__(self, backbone, head_config, dropout=0.1, l2_reg=0.01):
|
106 |
+
super().__init__()
|
107 |
+
self.backbone = backbone
|
108 |
+
self.num_heads = len(head_config)
|
109 |
+
self.heads = nn.ModuleDict({
|
110 |
+
name: nn.Linear(backbone.config.hidden_size, num_classes)
|
111 |
+
for name, num_classes in head_config.items()
|
112 |
+
})
|
113 |
+
self.do = nn.Dropout(dropout)
|
114 |
+
self.l2_reg = l2_reg
|
115 |
+
self.device = 'cpu'
|
116 |
+
self.torch_dtype = torch.float16
|
117 |
+
self.head_config = head_config
|
118 |
+
|
119 |
+
def forward(self, x, head_names=None) -> dict:
|
120 |
+
"""
|
121 |
+
Forward pass of the model.
|
122 |
+
|
123 |
+
Requires tokenizer output as input. The input should be a dictionary with keys 'input_ids', 'attention_mask'.
|
124 |
+
|
125 |
+
Args:
|
126 |
+
x (dict): Tokenizer output
|
127 |
+
head_names (list): (optional) List of head names to return logits for. If None, returns logits for all heads.
|
128 |
+
|
129 |
+
Returns:
|
130 |
+
dict: A dictionary with head names as keys and logits as values
|
131 |
+
"""
|
132 |
+
x = self.backbone(**x, return_dict=True, output_hidden_states=True).last_hidden_state[:, 0, :]
|
133 |
+
x = self.do(x)
|
134 |
+
if head_names is None:
|
135 |
+
return {name: head(x) for name, head in self.heads.items()}
|
136 |
+
return {name: head(x) for name, head in self.heads.items() if name in head_names}
|
137 |
+
|
138 |
+
def get_l2_loss(self):
|
139 |
+
"""
|
140 |
+
Getter for L2 regularization loss
|
141 |
+
|
142 |
+
Returns:
|
143 |
+
torch.Tensor: L2 regularization loss
|
144 |
+
"""
|
145 |
+
l2_loss = torch.tensor(0.).to(self.device)
|
146 |
+
for param in self.parameters():
|
147 |
+
if param.requires_grad:
|
148 |
+
l2_loss += torch.norm(param, 2)
|
149 |
+
return (self.l2_reg * l2_loss).to(self.device)
|
150 |
+
|
151 |
+
def to(self, *args, **kwargs):
|
152 |
+
super().to(*args, **kwargs)
|
153 |
+
if isinstance(args[0], torch.dtype):
|
154 |
+
self.torch_dtype = args[0]
|
155 |
+
elif isinstance(args[0], str):
|
156 |
+
self.device = args[0]
|
157 |
+
return self
|
158 |
+
|
159 |
+
def load_head(self, head_name, path):
|
160 |
+
"""
|
161 |
+
Load head from a file
|
162 |
+
|
163 |
+
Args:
|
164 |
+
head_name (str): Name of the head
|
165 |
+
path (str): Path to the file
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
None
|
169 |
+
"""
|
170 |
+
model = torch.load(path)
|
171 |
+
if head_name in self.heads:
|
172 |
+
num_classes = model['weight'].shape[0]
|
173 |
+
self.heads[head_name].load_state_dict(model)
|
174 |
+
self.to(self.torch_dtype).to(self.device)
|
175 |
+
self.head_config[head_name] = num_classes
|
176 |
+
return
|
177 |
+
|
178 |
+
assert model['weight'].shape[1] == self.backbone.config.hidden_size
|
179 |
+
num_classes = model['weight'].shape[0]
|
180 |
+
self.heads[head_name] = nn.Linear(self.backbone.config.hidden_size, num_classes)
|
181 |
+
self.heads[head_name].load_state_dict(model)
|
182 |
+
self.head_config[head_name] = num_classes
|
183 |
+
|
184 |
+
self.to(self.torch_dtype).to(self.device)
|
185 |
+
|
186 |
+
def save_head(self, head_name, path):
|
187 |
+
"""
|
188 |
+
Save head to a file
|
189 |
+
|
190 |
+
Args:
|
191 |
+
head_name (str): Name of the head
|
192 |
+
path (str): Path to the file
|
193 |
+
"""
|
194 |
+
torch.save(self.heads[head_name].state_dict(), path)
|
195 |
+
|
196 |
+
def save(self, path):
|
197 |
+
"""
|
198 |
+
Save the full model to a file
|
199 |
+
|
200 |
+
Args:
|
201 |
+
path (str): Path to the file
|
202 |
+
"""
|
203 |
+
torch.save(self.state_dict(), path)
|
204 |
+
|
205 |
+
def load(self, path):
|
206 |
+
"""
|
207 |
+
Load the full model from a file
|
208 |
+
|
209 |
+
Args:
|
210 |
+
path (str): Path to the file
|
211 |
+
"""
|
212 |
+
self.load_state_dict(torch.load(path))
|
213 |
+
self.to(self.torch_dtype).to(self.device)
|
214 |
+
|
215 |
+
def save_backbone(self, path):
|
216 |
+
"""
|
217 |
+
Save the backbone to a file
|
218 |
+
|
219 |
+
Args:
|
220 |
+
path (str): Path to the file
|
221 |
+
"""
|
222 |
+
self.backbone.save_pretrained(path)
|
223 |
+
|
224 |
+
def load_backbone(self, path):
|
225 |
+
"""
|
226 |
+
Load the backbone from a file
|
227 |
+
|
228 |
+
Args:
|
229 |
+
path (str): Path to the file
|
230 |
+
"""
|
231 |
+
self.backbone = AutoModel.from_pretrained(path)
|
232 |
+
self.to(self.torch_dtype).to(self.device)
|
233 |
+
|
234 |
+
def freeze_backbone(self):
|
235 |
+
""" Freeze the backbone """
|
236 |
+
for param in self.backbone.parameters():
|
237 |
+
param.requires_grad = False
|
238 |
+
|
239 |
+
def unfreeze_backbone(self):
|
240 |
+
""" Unfreeze the backbone """
|
241 |
+
for param in self.backbone.parameters():
|
242 |
+
param.requires_grad = True
|
243 |
+
|
244 |
+
def freeze_head(self, head_name):
|
245 |
+
"""
|
246 |
+
Freeze a head by name
|
247 |
+
|
248 |
+
Args:
|
249 |
+
head_name (str): Name of the head
|
250 |
+
"""
|
251 |
+
for param in self.heads[head_name].parameters():
|
252 |
+
param.requires_grad = False
|
253 |
+
|
254 |
+
def unfreeze_head(self, head_name):
|
255 |
+
"""
|
256 |
+
Unfreeze a head by name
|
257 |
+
|
258 |
+
Args:
|
259 |
+
head_name (str): Name of the head
|
260 |
+
"""
|
261 |
+
for param in self.heads[head_name].parameters():
|
262 |
+
param.requires_grad = True
|
263 |
+
|
264 |
+
def freeze_all_heads(self):
|
265 |
+
""" Freeze all heads """
|
266 |
+
for head_name in self.heads.keys():
|
267 |
+
self.freeze_head(head_name)
|
268 |
+
|
269 |
+
def unfreeze_all_heads(self):
|
270 |
+
""" Unfreeze all heads """
|
271 |
+
for head_name in self.heads.keys():
|
272 |
+
self.unfreeze_head(head_name)
|
273 |
+
|
274 |
+
def freeze_all(self):
|
275 |
+
""" Freeze all """
|
276 |
+
self.freeze_backbone()
|
277 |
+
self.freeze_all_heads()
|
278 |
+
|
279 |
+
def unfreeze_all(self):
|
280 |
+
""" Unfreeze all """
|
281 |
+
self.unfreeze_backbone()
|
282 |
+
self.unfreeze_all_heads()
|
283 |
+
|
284 |
+
def add_head(self, head_name, num_classes):
|
285 |
+
"""
|
286 |
+
Add a new head to the model
|
287 |
+
|
288 |
+
Args:
|
289 |
+
head_name (str): Name of the head
|
290 |
+
num_classes (int): Number of classes for the head
|
291 |
+
"""
|
292 |
+
self.heads[head_name] = nn.Linear(self.backbone.config.hidden_size, num_classes)
|
293 |
+
self.heads[head_name].to(self.torch_dtype).to(self.device)
|
294 |
+
self.head_config[head_name] = num_classes
|
295 |
+
|
296 |
+
def remove_head(self, head_name):
|
297 |
+
"""
|
298 |
+
Remove a head from the model
|
299 |
+
"""
|
300 |
+
if head_name not in self.heads:
|
301 |
+
raise ValueError(f'Head {head_name} not found')
|
302 |
+
del self.heads[head_name]
|
303 |
+
del self.head_config[head_name]
|
304 |
+
|
305 |
+
@classmethod
|
306 |
+
def from_pretrained(cls, model_name, head_config=None, dropout=0.1, l2_reg=0.01):
|
307 |
+
"""
|
308 |
+
Load a pretrained model from Huggingface model hub
|
309 |
+
|
310 |
+
Args:
|
311 |
+
model_name (str): Name of the model
|
312 |
+
head_config (dict): Head configuration
|
313 |
+
dropout (float): Dropout rate
|
314 |
+
l2_reg (float): L2 regularization rate
|
315 |
+
"""
|
316 |
+
if head_config is None:
|
317 |
+
head_config = {}
|
318 |
+
# check if model exists locally
|
319 |
+
hf_cache_dir = HF_HUB_CACHE
|
320 |
+
model_path = os.path.join(hf_cache_dir, model_name)
|
321 |
+
if os.path.exists(model_path):
|
322 |
+
return cls._from_directory(model_path, head_config, dropout, l2_reg)
|
323 |
+
|
324 |
+
model_path = snapshot_download(repo_id=model_name, cache_dir=hf_cache_dir)
|
325 |
+
return cls._from_directory(model_path, head_config, dropout, l2_reg)
|
326 |
+
|
327 |
+
@classmethod
|
328 |
+
def _from_directory(cls, model_path, head_config, dropout=0.1, l2_reg=0.01):
|
329 |
+
"""
|
330 |
+
Load a model from a directory
|
331 |
+
|
332 |
+
Args:
|
333 |
+
model_path (str): Path to the model directory
|
334 |
+
head_config (dict): Head configuration
|
335 |
+
dropout (float): Dropout rate
|
336 |
+
l2_reg (float): L2 regularization rate
|
337 |
+
"""
|
338 |
+
backbone = AutoModel.from_pretrained(os.path.join(model_path, 'pretrained/backbone.pth'))
|
339 |
+
instance = cls(backbone, head_config, dropout, l2_reg)
|
340 |
+
instance.load(os.path.join(model_path, 'pretrained/model.pth'))
|
341 |
+
instance.head_config = {k: v. instance.heads}
|
342 |
+
return instance
|