import gradio as gr import os import spaces import torch from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("segmind/tiny-sd") pipeline.load_lora_weights( "philipp-zettl/jon_juarez-lora", hf_token=os.environ.get('HF_TOKEN') ) pipe.to('cuda') @spaces.GPU def generate(prompt, negative_prompt, num_inference_steps, width, height): return pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, width=width, height=height).images app = gr.Interface( fn=generate, inputs=[ gr.Text(label="Prompt"), gr.Text("", label="Negative Prompt"), gr.Number(45, label="Number inference steps"), gr.Number(1024, label='image width'), gr.Number(1024, label='image height'), ], outputs=gr.Gallery(), ) with app as demo: demo.examples = [ "Colorful line shading by JON_JUAREZ a dark cave with toxic mushrooms", ] gr.Slider(label="seed") demo.launch()