import gradio as gr import os import spaces import torch from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("segmind/tiny-sd") pipe.load_lora_weights( "philipp-zettl/jon_juarez-lora", hf_token=os.environ.get('HF_TOKEN') ) pipe.to('cuda') @spaces.GPU def generate(prompt, negative_prompt, num_inference_steps, width, height, num_samples): return pipe( prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, width=width, height=height, num_images_per_prompt=num_samples ).images app = gr.Interface( fn=generate, inputs=[ gr.Text(label="Prompt"), gr.Text("", label="Negative Prompt"), gr.Slider(minimum=1, maximum=100, value=45, label="Number inference steps"), gr.Number(512, label='Image width'), gr.Number(512, label='Image height'), gr.Slider(minimum=1, maximum=10, value=1, label='Number samples'), ], outputs=gr.Gallery(), examples=[ [ "Colorful line shading by JON_JUAREZ a dark cave with toxic mushrooms", "", 45, 512, 512, 1 ] ] ) app.launch()