phitoduck's picture
added prose and sequencing to the article
6142d0c
import random
from datetime import datetime, timedelta, date, time
import pandas as pd
import numpy as np
from typing import List, Iterator, Dict, Any, Optional
def generate_random_data(
date: date,
start_time: time,
end_time: time,
count: int,
response_time_range: (int, int),
null_percentage: float
) -> pd.DataFrame:
start_datetime: datetime = datetime.combine(date, start_time)
end_datetime: datetime = datetime.combine(date, end_time)
random_timestamps: List[datetime] = [
start_datetime + timedelta(seconds=random.randint(0, int((end_datetime - start_datetime).total_seconds())))
for _ in range(count)
]
random_timestamps.sort()
random_response_times: List[Optional[int]] = [
random.randint(response_time_range[0], response_time_range[1]) for _ in range(count)
]
null_count: int = int(null_percentage * count)
null_indices: List[int] = random.sample(range(count), null_count)
for idx in null_indices:
random_response_times[idx] = None
data: Dict[str, Any] = {
'timestamp': random_timestamps,
'ResponseTime(ms)': random_response_times
}
df: pd.DataFrame = pd.DataFrame(data)
return df
def calculate_percentile(
df: pd.DataFrame,
freq: str,
percentile: float
) -> pd.DataFrame:
percentile_df: pd.DataFrame = df.groupby(pd.Grouper(key='timestamp', freq=freq))["ResponseTime(ms)"]\
.quantile(percentile).reset_index(name=f"p{int(percentile * 100)}_ResponseTime(ms)")
percentile_df.replace(to_replace=np.nan, value=None, inplace=True)
return percentile_df
def aggregate_data(
df: pd.DataFrame,
period_length: str,
) -> pd.DataFrame:
if df.empty:
return pd.DataFrame() # Return an empty DataFrame if input is empty
aggregation_funcs = {
'p50': lambda x: np.percentile(x.dropna(), 50) if not x.dropna().empty else np.nan,
'p95': lambda x: np.percentile(x.dropna(), 95) if not x.dropna().empty else np.nan,
'p99': lambda x: np.percentile(x.dropna(), 99) if not x.dropna().empty else np.nan,
'max': lambda x: np.max(x.dropna()) if not x.dropna().empty else np.nan,
'min': lambda x: np.min(x.dropna()) if not x.dropna().empty else np.nan,
'average': lambda x: np.mean(x.dropna()) if not x.dropna().empty else np.nan
}
summary_df = df.groupby(pd.Grouper(key='timestamp', freq=period_length)).agg(
p50=('ResponseTime(ms)', aggregation_funcs['p50']),
p95=('ResponseTime(ms)', aggregation_funcs['p95']),
p99=('ResponseTime(ms)', aggregation_funcs['p99']),
max=('ResponseTime(ms)', aggregation_funcs['max']),
min=('ResponseTime(ms)', aggregation_funcs['min']),
average=('ResponseTime(ms)', aggregation_funcs['average']),
).reset_index()
return summary_df
def re_aggregate_data(
df: pd.DataFrame,
period_length: str,
) -> pd.DataFrame:
if df.empty:
return pd.DataFrame() # Return an empty DataFrame if input is empty
aggregation_funcs = {
'p50': lambda x: np.percentile(x.dropna(), 50) if not x.dropna().empty else np.nan,
'p95': lambda x: np.percentile(x.dropna(), 95) if not x.dropna().empty else np.nan,
'p99': lambda x: np.percentile(x.dropna(), 99) if not x.dropna().empty else np.nan,
'max': lambda x: np.max(x.dropna()) if not x.dropna().empty else np.nan,
'min': lambda x: np.min(x.dropna()) if not x.dropna().empty else np.nan,
'average': lambda x: np.mean(x.dropna()) if not x.dropna().empty else np.nan
}
summary_df = df.groupby(pd.Grouper(key='timestamp', freq=period_length)).agg(
p50=('p50', aggregation_funcs['p50']),
p95=('p95', aggregation_funcs['p95']),
p99=('p99', aggregation_funcs['p99']),
max=('max', aggregation_funcs['max']),
min=('min', aggregation_funcs['min']),
average=('average', aggregation_funcs['average']),
).reset_index()
return summary_df
def downsample(df, period_minutes):
# Create a new datetime index at specified intervals
freq_str = f'{period_minutes}T'
new_index = pd.date_range(start=df['timestamp'].min(), end=df['timestamp'].max(), freq=freq_str)
# Create an empty DataFrame with the new index
df_downsampled = pd.DataFrame(index=new_index)
# Set the original DataFrame's index to the timestamp column
df.set_index('timestamp', inplace=True)
# Interpolate the values for each column
for column in df.columns:
df_downsampled[column] = df[column].resample(freq_str).interpolate(method='linear')
# Reset index to have timestamp as a column again
df_downsampled.reset_index(inplace=True)
df_downsampled.rename(columns={'index': 'timestamp'}, inplace=True)
return df_downsampled
def chunk_list(input_list: List[Any], size: int = 3) -> Iterator[List[Any]]:
while input_list:
chunk: List[Any] = input_list[:size]
yield chunk
input_list = input_list[size:]
def evaluate_alarm_state(
summary_df: pd.DataFrame,
threshold: int,
datapoints_to_alarm: int,
evaluation_range: int,
aggregation_function: str,
alarm_condition: str
) -> pd.DataFrame:
data_points: List[Optional[float]] = list(summary_df[aggregation_function].values)
data_table_dict: Dict[str, List[Any]] = {
"DataPoints": [],
"# of data points that must be filled": [],
"MISSING": [],
"IGNORE": [],
"BREACHING": [],
"NOT BREACHING": []
}
def check_condition(value, threshold, condition):
if condition == '>':
return value > threshold
elif condition == '>=':
return value >= threshold
elif condition == '<':
return value < threshold
elif condition == '<=':
return value <= threshold
for chunk in chunk_list(input_list=data_points, size=evaluation_range):
data_point_repr: str = ''
num_dp_that_must_be_filled: int = 0
for dp in chunk:
if str(dp).lower() == "nan":
dp_symbol = '⚫️'
elif check_condition(dp, threshold, alarm_condition):
dp_symbol = '🔴'
else:
dp_symbol = '🟢'
data_point_repr += dp_symbol
if len(chunk) < evaluation_range:
data_point_repr += '⚫️' * (evaluation_range - len(chunk))
if data_point_repr.count('⚫️') > (evaluation_range - datapoints_to_alarm):
num_dp_that_must_be_filled = datapoints_to_alarm - sum([data_point_repr.count('🟢'), data_point_repr.count('🔴')])
data_table_dict["DataPoints"].append(data_point_repr)
data_table_dict["# of data points that must be filled"].append(num_dp_that_must_be_filled)
if num_dp_that_must_be_filled > 0:
data_table_dict["MISSING"].append("INSUFFICIENT_DATA" if data_point_repr.count('⚫️') == evaluation_range else "Retain current state")
data_table_dict["IGNORE"].append("Retain current state")
data_table_dict["BREACHING"].append("ALARM")
data_table_dict["NOT BREACHING"].append("OK")
else:
data_table_dict["MISSING"].append("OK")
data_table_dict["IGNORE"].append("Retain current state")
data_table_dict["BREACHING"].append("ALARM" if '🔴' * datapoints_to_alarm in data_point_repr else "OK")
data_table_dict["NOT BREACHING"].append("ALARM" if '🟢' * datapoints_to_alarm not in data_point_repr else "OK")
return pd.DataFrame(data_table_dict)